Advanced SearchSearch Tips
E-Inversive Γ-Semigroups
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 49, Issue 3,  2009, pp.457-471
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2009.49.3.457
 Title & Authors
E-Inversive Γ-Semigroups
Sen, Mridul Kanti; Chattopadhyay, Sumanta;
  PDF(new window)
Let S = {a, b, c, ...} and = {, , , ...} be two nonempty sets. S is called a -semigroup if , for all and a, b S and , for all a, b, c S and for all , . An element is said to be an -idempotent for some if = e. A -semigroup S is called an E-inversive -semigroup if for each there exist and such that ax is a -idempotent for some . A -semigroup is called a right E--semigroup if for each -idempotent e and -idempotent f, is a -idempotent. In this paper we investigate different properties of E-inversive -semigroup and right E--semigroup.
E-inversive -semigroup;Right E--semigroup;semidirect product;
 Cited by
F. Catino, and M. M. Miccoli, On semidirect products of semigroups, Note di Mat., 9(1989), 189-194.

S. Chattopadhyay, Right Orthodox ${\Gamma}$-semigroup, Southeast Asian Bull. of Math., 29(2005), 23-30.

T. K. Dutta and S. Chattopadhyay, On Unoformly Strongly Prime $\Gamma$-Semigroup, Analale Stiintifice Ale Universitatii "AL. I. CUZA" Tomul LII, S.I, Mathematica, 2(2006), 325-335.

H. Mitsch, M. Petrich, Basic properties of E-inversive semigroups, Comm. Algebra, 28(2000), 5169-5182. crossref(new window)

N. K. Saha, On ${\Gamma}$-semigroup II , Bull. Cal. Math. Soc., 79(1987), 331-335.

M. K. Sen, and S. Chattopadhyay, Wreath Product of a semigroup and a $\Gamma$-semigroup, Discussiones Mathematicae - General Algebra and Applications, Vol.28(2008), 161-178. crossref(new window)

M. K. Sen and N. K. Saha, On ${\Gamma}$-semigroup I , Bull. Cal. Math. Soc., 78(1986), 181-186.

A. Seth, Rees's theorem for ${\Gamma}$-semigroup , Bull. Cal. Math. Soc., 81(1989), 217-226.

Barbara Weipoltshammer, On classes of E-inversive semigroups and semigroups whose idempotents form a subsemigroup, Communications in Algebra, 32(2004), 2929-2948. crossref(new window)