JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On Generalizations of Extending Modules
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 49, Issue 3,  2009, pp.557-562
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2009.49.3.557
 Title & Authors
On Generalizations of Extending Modules
Karabacak, Fatih;
  PDF(new window)
 Abstract
A module M is said to be SIP-extending if the intersection of every pair of direct summands is essential in a direct summand of M. SIP-extending modules are a proper generalization of both SIP-modules and extending modules. Every direct summand of an SIP-module is an SIP-module just as a direct summand of an extending module is extending. While it is known that a direct sum of SIP-extending modules is not necessarily SIP-extending, the question about direct summands of an SIP-extending module to be SIP-extending remains open. In this study, we show that a direct summand of an SIP-extending module inherits this property under some conditions. Some related results are included about and SIP-modules.
 Keywords
SIP-extending modules;summand intersection property;extending modules;
 Language
English
 Cited by
1.
CS-Rickart modules, Lobachevskii Journal of Mathematics, 2014, 35, 4, 317  crossref(new windwow)
 References
1.
F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, 1974.

2.
D. M. Arnold and J. Hausen, A characterization of modules with the summand intersection property, Comm. Algebra, 18(1990), 519-528. crossref(new window)

3.
G. F. Birkenmeier, F. Karabacak and A. Tercan, When is the SIP (SSP) property inherited by free modules, Acta Math. Hungar., 112(2006), 103-106. crossref(new window)

4.
G. F. Birkenmeier, J. Y. Kim and J. K. Park, When is the CS condition hereditary?, Comm. Algebra, 27(1999), 3785-3885. crossref(new window)

5.
N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Longman, 1990.

6.
J. Hausen, Modules with the summand intersection property, Comm. Algebra, 17(1989), 135-148. crossref(new window)

7.
I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, 1969.

8.
F. Karabacak and A. Tercan, Matrix rings with the summand intersection property, Czech. Math. J., 53(2003), 621-626. crossref(new window)

9.
F. Karabacak and A. Tercan, On modules and matrix rings with SIP-extending, Taiwanese J. Math., 11(2007), 1037-1044.

10.
N. K. Kim and Y. Lee, Armendariz rings and reduced rings, Journal of Algebra, 223(2000), 477-488. crossref(new window)

11.
S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, Cambridge University Press, 1990.

12.
K. Oshiro and S. T. Rizvi, Exchange property of quasi-continuous modules with the finite exchange property, Osaka J. Math., 33(1996), 217-234.

13.
S. T. Rizvi and C. S. Roman, Baer and quasi-baer modules, Comm. Algebra, 32(2004), 103-123. crossref(new window)

14.
P. F. Smith, Modules for which every submodule has a unique closure, Ring Theory (S.Jain and S.T. Rizvi eds.) New Jersey, World Scientific, (1992), 302-317.

15.
P. F. Smith and A. Tercan, Generalizations of CS-modules, Comm. Algebra, 21(1993), 1809-1847. crossref(new window)

16.
P. F. Smith and A. Tercan, Direct summands of modules which satisfy (C11), Algebra Colloq., 11(2004), 231-237.

17.
G. V. Wilson, Modules with the summand intersection property, Comm. Algebra, 14(1986), 21-38. crossref(new window)