JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Sharp-unknotting Number of a Torus Knot
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 49, Issue 3,  2009, pp.583-594
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2009.49.3.583
 Title & Authors
Sharp-unknotting Number of a Torus Knot
Kanenobu, Taizo;
  PDF(new window)
 Abstract
We give an estimation for the sharp-unknotting number of certain types of torus knots, and decide it for 39 torus knots.
 Keywords
Torus knot;sharp-unknotting number;
 Language
English
 Cited by
 References
1.
C. McA. Gordon, R. A. Litherland and K. Murasugi, Signatures of covering links, Canad. J. Math., 33(1981), 381-415. crossref(new window)

2.
P. Kromheimer and T. Mrowka, Gauge theory for embedded surfaces I, Topology, 32(1993), 773-826 crossref(new window)

3.
P. Kromheimer and T. Mrowka, Gauge theory for embedded surfaces II, Topology, 34(1995), 37-97. crossref(new window)

4.
H. Murakami, Some metrics on classical knots, Math. Ann., 270(1985), 35-45. crossref(new window)

5.
H. Murakami and S. Sakai, Sharp-unknotting number and the Alexander module, Topology Appl., 52(1993), 169-179. crossref(new window)

6.
K. Murasugi, On closed 3-braids, Mem. Amer. Math. Soc., no. 151, 1974.

7.
K. Murasugi, Knot Theory and Its Applications, Birkhauser, 1996.

8.
K. Nakamura, Y. Nakanishi, and Y. Uchida, Delta-unknotting number for knots, J. Knot Theory Ramifications, 7(1998), 639-650. crossref(new window)

9.
Y. Ohyama, Twisting and unknotting operations, Rev. Mat. Univ. Complut. Madrid, 7(1994), 289-305.