JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Weakly Hyponormal Composition Operators and Embry Condition
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 49, Issue 4,  2009, pp.683-689
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2009.49.4.683
 Title & Authors
Weakly Hyponormal Composition Operators and Embry Condition
Lee, Mi-Ryeong; Park, Jung-Woi;
  PDF(new window)
 Abstract
We investigate the gaps among classes of weakly hyponormal composition operators induced by Embry characterization for the subnormality. The relationship between subnormality and weak hyponormality will be discussed in a version of composition operator induced by a non-singular measurable transformation.
 Keywords
subnormal;n-hyponormal;E(n)-hyponormal;composition operator;
 Language
English
 Cited by
1.
Weak Hyponomal Composition Operators Induced by a Tree,;;

Kyungpook mathematical journal, 2010. vol.50. 1, pp.89-100 crossref(new window)
1.
Weak Hyponomal Composition Operators Induced by a Tree, Kyungpook mathematical journal, 2010, 50, 1, 89  crossref(new windwow)
 References
1.
J. Bram, Subnormal operators, Duke Math. J., 22(1955), 75-94. crossref(new window)

2.
C. Burnap and I. B. Jung, Composition operators with weak hyponormality, J. Math. Anal. Appl., 337(2008), 686-694. crossref(new window)

3.
C. Burnap, I. B. Jung and A. Lambert, Separating partial normality classes with composition operators, J. Operator Theory, 53(2005), 381-397.

4.
J. Conway, Subnormal Operators, Pitman Advanced Publishing Program, 1981.

5.
R. E. Curto and L. A. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, Integral Equation and Operator Theory, 17(1993), 202-246. crossref(new window)

6.
M. Embry, A generalization of the Halmos-Bram condition for subnormality, Acta. Sci. Math.(Szeged), 35(1973), 61-64.

7.
I. Jung, M. Lee and S. Park, Separating classes of composition operators via subnormal condition, Proc. Amer. Math. Soc., 135(2007), 3955-3965. crossref(new window)

8.
J. W. Park and S. S. Park, On k-hyponormal weighted translation semigroups, Bull. Kor. Math. Soc., 39(2002), 527-534. crossref(new window)

9.
S. McCullough and V. I. Paulsen, A note on joint hyponormality, Proc. Amer. Math. Soc., 107(1989), 187-195. crossref(new window)

10.
S. McCullough and V. I. Paulsen, k-hyponormality of weighted shifts, Proc. Amer. Math. Soc., 116(1992), 165-169.

11.
Wolfram Research, Inc. Mathematica, Version 3.0, Wolfram Reseqrch Inc. Champaign, IL, 1996.