JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Convolution Properties of Certain Class of Multivalent Meromorphic Functions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 49, Issue 4,  2009, pp.713-723
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2009.49.4.713
 Title & Authors
Convolution Properties of Certain Class of Multivalent Meromorphic Functions
Vijaywargiya, Pramila;
  PDF(new window)
 Abstract
The purpose of the present paper is to introduce a new subclass of meromorphic multivalent functions defined by using a linear operator associated with the generalized hypergeometric function. Some properties of this class are established here by using the principle of differential subordination and convolution in geometric function theory.
 Keywords
subordination;differential subordination;generalized hypergeometric function;meromorphic multivalent functions;convex functions;starlike functions;Hadamard product(or convolution);
 Language
English
 Cited by
1.
Subordination and inclusion theorems for subclasses of meromorphic functions with applications to electromagnetic cloaking, Mathematical and Computer Modelling, 2013, 57, 3-4, 945  crossref(new windwow)
 References
1.
B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(1984), 737-745. crossref(new window)

2.
N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292(2004), 470-483. crossref(new window)

3.
N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion relationships for certain subclasses of meromorphic functions associated with a family of multiplier transformations, Integral Transforms Spec. Funct., 16(2005), 647-659. crossref(new window)

4.
J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103(1999), 1-13.

5.
J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14(2003), 7-18. crossref(new window)

6.
C.-Y. Gao, S.-M. Yuan and H. M. Srivastava, Some functional inequalities and inclusion relationships associated with certain families of integral operators, Comput. Math. Appl., 49(2005), 1787-1795. crossref(new window)

7.
S. P. Goyal and R. Goyal, On a class of multivalent functions defined by generalized Ruscheweyh derivatives involving a general fractional derivative operator, J. Indian Acad. Math., 27(2005), 439-454.

8.
S. P. Goyal and M. Bhagtani, On certain family of generalized integral operators and multivalent analytic functions, Proceedings of the 6th Int. Conf. SSFA, 6(2005), 35-47.

9.
I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176(1993), 138-147. crossref(new window)

10.
J. -L. Liu, Note on Ruscheweyh derivatives, J. Math. Anal. Appl., 199(1996), 936-940. crossref(new window)

11.
J. -L. Liu and K. I. Noor, Some properties of Noor integral operator, J. Nat. Geom., 21(2002), 81-90.

12.
K. I. Noor, On new classes of integral operators, J. Nat. Geom., 16(1999), 71-80.

13.
K. I. Noor, On certain classes of meromorphic functions involving integral operators, J. Ineq. Pure and Appl. Math., 7(2006), Art. 138.

14.
K. I. Noor and M. A. Noor, On integral operators, J. Math. Anal. Appl., 238(1999), 341-352. crossref(new window)

15.
St. Ruscheweyh, Convolutions in Geometric Function Theory, Les Presses de l'Univ. de Montreal, 1982.

16.
St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115. crossref(new window)

17.
H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood, Chichester), John Wiley and Sons, New York.

18.
J. Sokol and L. Trojnar-Spelina, Convolution properties for certain classes of multi-valent functions, J. Math. Anal. Appl., 337(2008), 1190-1197. crossref(new window)

19.
S.-M. Yuan, Z.-M. Liu and H. M. Srivastava, Some inclusion relationships and integral-preserving properties of certain subclasses of meromorphic functions associated with a family of integral operators, J. Math. Anal. Appl., 337(2008), 505-515. crossref(new window)