Some Properties of Harmonic Functions Defined by Convolution

- Journal title : Kyungpook mathematical journal
- Volume 49, Issue 4, 2009, pp.751-761
- Publisher : Department of Mathematics, Kyungpook National University
- DOI : 10.5666/KMJ.2009.49.4.751

Title & Authors

Some Properties of Harmonic Functions Defined by Convolution

Dixit, Kaushal Kishor; Porwal, Saurabh;

Dixit, Kaushal Kishor; Porwal, Saurabh;

Abstract

In this paper, we introduce and study a comprehensive family of harmonic univalent functions which contains various well-known classes of harmonic univalent functions as well as many new ones. Also, we improve some results obtained by Frasin [3] and obtain coefficient bounds, distortion bounds and extreme points, convolution conditions and convex combination are also determined for functions in this family. It is worth mentioning that many of our results are either extensions or new approaches to those corresponding previously known results.

Keywords

harmonic;analytic and univalent functions;

Language

English

Cited by

1.

2.

References

1.

Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Sklodowska Sect.A, 44(1990), 1-7.

2.

J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser.AI Math., 9(1984), 3-25.

3.

B. A. Frasin, Comprehensive family of harmonic univalent functions, SUT Journal of Mathematics, 42(1)(2006), 145-155.

4.

J. M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235(1999), 470-477.

5.

M. Ozturk, S. Yalcin and M. Yamankaradeniz, Convex subclass of harmonic starlike functions, Appl. Math. Comput., 154(2004), 449-459.

6.

H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.

7.

H. Silverman, Harmonic univalent function with negative coefficients, J. Math. Anal. Appl., 220(1998), 283-289.

8.

H. Silverman, E. M. Silvia, Subclasses of Harmonic univalent functions, New Zealand. J. Math., 28(1999), 275-284.