Advanced SearchSearch Tips
When Some Complement of an EC-Submodule is a Direct Summand
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 50, Issue 1,  2010, pp.101-107
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2010.50.1.101
 Title & Authors
When Some Complement of an EC-Submodule is a Direct Summand
Denizli, Canan Celep Yucel; Ankara, Adnan Tercan;
  PDF(new window)
A module M is said to satisfy the condition if every ec-submodule of M has a complement which is a direct summand. We show that for a multiplication module over a commutative ring the and P-extending conditions are equivalent. It is shown that the property is not inherited by direct summands. Moreover, we prove that if M is an -module where SocM is an ec-submodule, then it is a direct sum of a module with essential socle and a module with zero socle. An example is given to show that the reverse of the last result does not hold.
Extending module;ec-closed submodule;P-extending module;-module;Multiplication module;
 Cited by
M. M. Ali, D. J. Smith, Pure submodules of multiplication modules, Beitrage zur Algebra und Geometrie, Vol. 45(2004), 61-74.

F.W. Anderson, K.R. Fuller, Rings and Catogories of Modules, Springer-Verlag, New York, 1992.

G.F. Birkenmeier, A. Tercan, When some complement of a submodule is a summand, Comm. Algebra, 35(2)(2007), 597-611. crossref(new window)

G.F. Birkenmeier, B.J. Muller, S.T. Rizvi, Modules in which every fully invariant submodule is essential in a direct summand, Comm. Algebra, 30(3)(2002), 1395-1415. crossref(new window)

G.F. Birkenmeier, J.Y. Kim, J.K. Park, When is the CS condition hereditary?, Comm. Algebra, 27(8)(1999), 3875-3885. crossref(new window)

C. Celep Yucel and A. Tercan, Modules whose ec-closed submodules are direct summand, Taiwanese J. Math., 13(2009), 1247-1256.

N.V. Dung, D.V. Huynh, P.F. Smith, R. Wisbauer, Extending Modules, Longman Scientific and Technical, Harlow, Essex, England, 1994.

Z. A. El-Bast, P. F. Smith, Multiplication modules, Comm. Algebra, 16(1988), 755-779. crossref(new window)

M.A. Kamal, O.A. Elmnophy, On P-extending Modules, Acta. Math. Univ. Comenianae, 74 ,(2005), 279-286.

T.Y. Lam, Lectures on Modules and Rings, Springer, New York, 1999.

P.F. Smith, A. Tercan, Generalizations of CS-Modules, Comm. Algebra, 21(6)(1993), 1809-1847. crossref(new window)

P.F. Smith, A. Tercan, Direct summands of modules which satisfy ($C_{11}$), Algebra Colloq., 11(2004), 231-237.

B. Stenstrom, Rings of Quotients, Springer-Verlag, New York, 1975.

F. Takıl, A. Tercan, Modules whose submodules essentially embedded in direct summands, Comm. Algebra, 37(2009), 460-469. crossref(new window)

G.V. Wilson, Modules with summand intersection property, Comm. Algebra, 14(1)(1986), 21-38. crossref(new window)