Advanced SearchSearch Tips
The Leading Finite Type Coefficients of the Links-Gould Polynomial of a Link
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 50, Issue 1,  2010, pp.49-58
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2010.50.1.049
 Title & Authors
The Leading Finite Type Coefficients of the Links-Gould Polynomial of a Link
Ishii, Atsushi;
  PDF(new window)
We show that the Links-Gould polynomial of a link has finite type coefficients in a multivariate series expansion, and express the leading coefficients in terms of the linking numbers of a link.
Links-Gould polynomial;finite type invariant;Vassiliev invariant;
 Cited by
J. S. Birman, New points of view in knot theory, Bull. Amer. Math. Soc. (N.S.), 28(1993), 253-287. crossref(new window)

J. S. Birman and X. S. Lin, Knot polynomials and Vassiliev's invariants, Invent. Math., 111(1993), 225-270. crossref(new window)

D. De Wit, Automatic evaluation of the Links-Gould invariant for all prime knots of up to 10 crossings, J. Knot Theory Ramifications, 9(2000), 311-339. crossref(new window)

D. De Wit, L. H. Kauffman and J. R. Links, On the Links-Gould invariant of links, J. Knot Theory Ramifications, 8(1999), 165-199. crossref(new window)

J. Hoste, The first coefficient of the Conway polynomial, Proc. Amer. Math. Soc., 95(1985), 299-302. crossref(new window)

A. Ishii, Algebraic links and skein relations of the Links-Gould invariant, Proc. Amer. Math. Soc., 132(2004), 3741-3749. crossref(new window)

A. Ishii, The Links-Gould polynomial as a generalization of the Alexander-Conway polynomial, Pacific J. Math., 225(2006), 273-285. crossref(new window)

T. Kanenobu, Infinitely many knots with the same polynomial invariant, Proc. Amer. Math. Soc., 97(1986), 158-161. crossref(new window)

T. Kanenobu, Examples on polynomial invariants of knots and links, Math. Ann., 275(1986), 555-572. crossref(new window)

T. Kanenobu, Y. Miyazawa and A. Tani, Vassiliev link invariants of order three, J. Knot Theory Ramifications., 7(1998), 433-462. crossref(new window)

J. R. Links and M. D. Gould, Two variable link polynomials from quantum supergroups, Letters in Mathematical Physics, 26(1992), 187-198. crossref(new window)

H. Murakami, Vassiliev invariants of type two for a link, Proc. Amer. Math. Soc., 124(1996), 3889-3896. crossref(new window)

T. Ohtsuki, Quantum invariants. A study of knots, 3-manifolds, and their sets, Series on Knots and Everything, 29. World Scientific Publishing Co., Inc., River Edge, NJ, 2002.

V. A. Vassiliev, Cohomology of knot spaces, Theory of singularities and its applications, 23-69, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990.