JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Property of the Weak Subalgebra Lattice for Algebras with Some Non-Equalities
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 50, Issue 2,  2010, pp.195-211
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2010.50.2.195
 Title & Authors
A Property of the Weak Subalgebra Lattice for Algebras with Some Non-Equalities
Pioro, Konrad;
  PDF(new window)
 Abstract
Let A be a locally finite total algebra of finite type such that ai for every operation , elements an and . We show that the weak subalgebra lattice of A uniquely determines its (strong) subalgebra lattice. More precisely, for any algebra B of the same finite type, if the weak subalgebra lattices of A and B are isomorphic, then their subalgebra lattices are also isomorphic. Moreover, B is also total and locally finite.
 Keywords
hypergraph;strong and weak subalgebras;subalgebra lattices;partial algebra;
 Language
English
 Cited by
1.
A STRONG PROPERTY OF THE WEAK SUBALGEBRA LATTICE FOR LOCALLY FINITE ALGEBRAS OF FINITE TYPE, International Journal of Algebra and Computation, 2013, 23, 01, 1  crossref(new windwow)
 References
1.
Bartol W., Weak subalgebra lattices, Comment. Math. Univ. Carolinae, 31(1990), 405-410.

2.
Bartol W., Weak subalgebra lattices of monounary partial algebras, Comment. Math. Univ. Carolinae, 31(1990), 411-414.

3.
Bartol W., Rossello F., Rudak L., Lectures on Algebras, Equations and Partiality, Technical report B-006, Univ. Illes Balears, Dept. Ciencies Mat. Inf., ed. Rossello F., 1992.

4.
Berge C., Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.

5.
Burmeister P., A Model Theoretic Oriented Approach to Partial Algebras, Math. Re- search Band, 32, Akademie Verlag, Berlin, 1986.

6.
Crawley P., Dilworth R.P., Algebraic Theory of Lattices, Prentice Hall Inc., Engle- wood Cliffs, NJ, 1973.

7.
Burris S., Sankappanavar H. P., A Course in Universal Algebra, Graduate Texts in Mathematics, 78. Springer-Verlag, New York-Berlin, 1981.

8.
Evans T., Ganter B., Varieties with modular subalgebra lattices, Bull. Austr. Math. Soc., 28(1983), 247-254. crossref(new window)

9.
Jonsson B., Topics in Universal Algebra, Lecture Notes in Mathemathics 250, Springer-Verlag, 1972.

10.
McKenzie R. N., McNulty G. F., Taylor W. F., Algebras, Lattices, Varieties v.I, Wadsworth and Brooks/Cole Advanced Books and Software, Monterey, 1987.

11.
Pioro K., On a strong property of the weak subalgebra lattice, Alg. Univ., 40(4)(1998), 477-495. crossref(new window)

12.
Pioro K., On connections between hypergraphs and algebras, Arch. Math. (Brno), 36(1)(2000), 45-60.

13.
Pioro K., Some properties of the weak subalgebra lattice of a partial algebra of a fixed type, Arch. Math. (Brno), 38(2)(2002), 81-94

14.
Schmidt R., Subgroup Lattices of Groups, Walter de Gruyter, New York, 1994.

15.
Shapiro J., Finite equational bases for subalgebra distributive varieties, Alg. Univ., 24(1987), 36-40. crossref(new window)

16.
Shapiro J., Finite algebras with abelian properties, Alg. Univ., 25(1988), 334-364. crossref(new window)