JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Numerical Plank Problem
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 50, Issue 2,  2010, pp.289-295
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2010.50.2.289
 Title & Authors
Numerical Plank Problem
Kim, Sung-Guen;
  PDF(new window)
 Abstract
Parallel to the plank problem, we investigate the numerical plank problem.
 Keywords
Polynomial plank constants;numerical polynomial plank constants;
 Language
English
 Cited by
 References
1.
R. Aron and P. Berner, A Hahn-Banach extension theorem for analytic functions, Bull. Soc. Math. France 106(1978), 3-24.

2.
K.M. Ball, The plank problem for symmetric bodies, Invent. Math. 104(1991), 535-543. crossref(new window)

3.
T. Bang, A solution of the plank problem for symmetric bodies, Proc. Amer. Math.Soc. 2(1951), 990-993.

4.
F.F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge Univ. Press, 1973.

5.
Y.S. Choi, D. Garcia, S.G. Kim, and M. Maestre, The polynomial numerical index of a Banach space, Proc. Edinburgh Math. Soc. 49(2006), 39-52. crossref(new window)

6.
A.M. Davie and T.W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106(1989), 351-356. crossref(new window)

7.
S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer Monographs in Mathematics, Springer-Verlag, London, 1999.

8.
S.G. Kim, Polynomial plank constants, Preprint.

9.
Sz. Revesz and Y. Sarantopoulos, Plank problems, polarization and Chebyshev con- stants, J. Korean Math. Soc. 41(2004), 157-174. crossref(new window)