JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Hyers-Ulam Stability of Cubic Mappings in Non-Archimedean Normed Spaces
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 50, Issue 2,  2010, pp.315-327
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2010.50.2.315
 Title & Authors
Hyers-Ulam Stability of Cubic Mappings in Non-Archimedean Normed Spaces
Mirmostafaee, Alireza Kamel;
  PDF(new window)
 Abstract
We give a xed point approach to the generalized Hyers-Ulam stability of the cubic equation f(2x + y) + f(2x - y)
 Keywords
Hyers-Ulam-Rassias stability;Cubic functional equation;fixed point alternative;non-Archimedean normed space;
 Language
English
 Cited by
1.
A General System of Nonlinear Functional Equations in Non-Archimedean Spaces,;;;

Kyungpook mathematical journal, 2013. vol.53. 3, pp.419-433 crossref(new window)
2.
Approximately Orthogonal Additive Set-valued Mappings,;;

Kyungpook mathematical journal, 2013. vol.53. 4, pp.639-646 crossref(new window)
3.
Nearly k-th Partial Ternary Quadratic *-Derivations,;;;

Kyungpook mathematical journal, 2015. vol.55. 4, pp.893-907 crossref(new window)
1.
Stability and superstability of generalized quadratic ternary derivations on non-Archimedean ternary Banach algebras: a fixed point approach, Fixed Point Theory and Applications, 2012, 2012, 1, 97  crossref(new windwow)
2.
A General System of Nonlinear Functional Equations in Non-Archimedean Spaces, Kyungpook mathematical journal, 2013, 53, 3, 419  crossref(new windwow)
3.
Approximately Orthogonal Additive Set-valued Mappings, Kyungpook mathematical journal, 2013, 53, 4, 639  crossref(new windwow)
4.
Nearly k-th Partial Ternary Quadratic *-Derivations, Kyungpook mathematical journal, 2015, 55, 4, 893  crossref(new windwow)
5.
Fixed points and quadratic equations connected with homomorphisms and derivations on non-Archimedean algebras, Advances in Difference Equations, 2012, 2012, 1, 128  crossref(new windwow)
 References
1.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950) 64-66. crossref(new window)

2.
L. M. Arriola and W. A. Beyer, Stability of the Cauchy functional equation over p-adic fields, Real Analysis Exchange, 31(2005/2006), 125-132

3.
D. G. Bourgin, Classes of transformations and bordering transformations, Bull. AMS, 57(1951), 223-237. crossref(new window)

4.
L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346(2004), 43-52.

5.
J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for the con- tractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74(1968), 305-309. crossref(new window)

6.
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436. crossref(new window)

7.
K. Hensel, Uber eine news Begrundung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein, 6(1897), 83-88.

8.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci.U.S.A., 27(1941), 222-224. crossref(new window)

9.
D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.

10.
S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.

11.
Y.-S Jung and I.-S. Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl., 306b(2005) 752-760.

12.
Z. Kaiser, On stability of the monomial functional equation in normed spaces over fields with valuation, J. Math. Anal. Appl., 322(2006), No. 2, 1188-1198. crossref(new window)

13.
K.W. Jun and H.M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274(2002), 867-878. crossref(new window)

14.
S.-M. Jung and T.-S. Kim, A fixed point approach to the stability of the cubic func- tional equation, Bol. Soc. Mat. Mexicana, (3) 12(2006), no. 1, 51-57.

15.
A. K. Mirmostafaee, Approximately additive mappings in non-Archimedean normed spaces, Bull. Korean Math. Soc., 46(2009) no.2, 378-400. crossref(new window)

16.
A.K. Mirmostafaee, Stability of quartic mappings in non-Archimedean normed spaces, Kyungpook Math. J., 49(2009), 289-297. crossref(new window)

17.
A. K. Mirmostafaee and M. S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sci., 178(2008), no 19, 3791-3798. crossref(new window)

18.
M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., (N. S.), 37(2006), no. 3, 361-376. crossref(new window)

19.
M.S. Moslehian, The Jensen functional equation in non-Archimedean normed spaces, J. Funct. Spaces Appl., 7(2009), no. 1, 13-24. crossref(new window)

20.
M. S. Moslehian and T. M. Rassias, Stability of functional equations in non Archimedean spaces, Appl. Anal. Discrete Math., 1(2007), 325-334. crossref(new window)

21.
M. S. Moslehian and G. Sadeghi, Stability of two types of cubic functional equations in non-Archimedean spaces, Real Anal. Exchange, 33(2008), no. 2, 375-383.

22.
A. Najati, The generalized Hyers-Ulam-Rassias stability of a cubic functional equa- tion, Turk J. Math., 31(2007), 395-408.

23.
L. Narici and E. Beckenstein, Strange terrain|non-Archimedean spaces, Amer. Math. Monthly, 88(1981), no. 9, 667-676. crossref(new window)

24.
J. M. Rassias, Alternative contraction principle and Ulam stability problem, Math. Sci. Res. J., 9(7)(2005), 190-199.

25.
V. Radu, The fixed point alternative and stability of functional equations, Fixed Point Theory, 4(2003), no. 1. 91-96.

26.
J. M. Rassias, Solution of the stability problem for cubic mappings, Glasnik Math., Vol. 36, 56(2001), 63-72.

27.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300. crossref(new window)

28.
S. M. Ulam, Problems in Modern Mathematics (Chapter VI, Some Questions in Analysis: 1, Stability), Science Editions, John Wiley & Sons, New York, 1964.