lder`s Inequality;Power Mean Inequality;"/> lder`s Inequality;Power Mean Inequality;"/> Ostrowski`s Type Inequalities for (α, m)-Convex Function | Korea Science
JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Ostrowski`s Type Inequalities for (α, m)-Convex Function
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 50, Issue 3,  2010, pp.371-378
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2010.50.3.371
 Title & Authors
Ostrowski`s Type Inequalities for (α, m)-Convex Function
Ozdemir, Muhamet Emin; Kavurmaci, Havva; Set, Erhan;
  PDF(new window)
 Abstract
In this paper, we establish new inequalities of Ostrowski`s type for functions whose derivatives in absolute value are (, m)-convex.
 Keywords
(, m)-Convex Function;m-Convex Function;Convex Function Ostrowski`s Inequality;Hlder`s Inequality;Power Mean Inequality;
 Language
English
 Cited by
1.
On Generalizations of the Hadamard Inequality for (α, m)-Convex Functions,;;;;

Kyungpook mathematical journal, 2012. vol.52. 3, pp.307-317 crossref(new window)
2.
On a New Ostrowski-Type Inequality and Related Results,;;

Kyungpook mathematical journal, 2014. vol.54. 4, pp.545-554 crossref(new window)
1.
On the generalization of Ostrowski and Grüss type discrete inequalities, Computers & Mathematics with Applications, 2011, 62, 1, 455  crossref(new windwow)
2.
On Generalizations of the Hadamard Inequality for (α, m)-Convex Functions, Kyungpook mathematical journal, 2012, 52, 3, 307  crossref(new windwow)
3.
On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals, Journal of Inequalities and Applications, 2013, 2013, 1, 220  crossref(new windwow)
4.
Hermite–Hadamard type inequality for Sugeno integrals, Applied Mathematics and Computation, 2014, 237, 632  crossref(new windwow)
5.
Sandor Type Inequalities for Sugeno Integral with respect to Generalα,m,r-Convex Functions, Journal of Function Spaces, 2015, 2015, 1  crossref(new windwow)
6.
Hermite–Hadamard-type inequalities for Riemann–Liouville fractional integrals via two kinds of convexity, Applicable Analysis, 2013, 92, 11, 2241  crossref(new windwow)
7.
Barnes-Godunova-Levin type inequality of the Sugeno integral for an ( α , m ) -concave function, Journal of Inequalities and Applications, 2015, 2015, 1  crossref(new windwow)
8.
Berwald-type inequalities for Sugeno integral with respect to ( α , m , r ) g ${ ( {\alpha,m,r} )_{g}}$ -concave functions, Journal of Inequalities and Applications, 2016, 2016, 1  crossref(new windwow)
9.
Hermite–Hadamard type integral inequalities for differentiable m-preinvex and (α,m)-preinvex functions, Journal of the Egyptian Mathematical Society, 2015, 23, 2, 236  crossref(new windwow)
10.
On a New Ostrowski-Type Inequality and Related Results, Kyungpook mathematical journal, 2014, 54, 4, 545  crossref(new windwow)
11.
Hermite–Hadamard-type inequalities via (α,m)-convexity, Computers & Mathematics with Applications, 2011, 61, 9, 2614  crossref(new windwow)
12.
New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Computers & Mathematics with Applications, 2012, 63, 7, 1147  crossref(new windwow)
 References
1.
M. Alomari, M. Darus, S. S. Dragomir and P. Cerone, Ostrowski's inequalities for functions whose derivatives are s-convex in the second sense, RGMIA Res. Rep. Coll., 12(2009), Supplement, Article 15. [ONLINE: http://www.staff.vu.edu.au/RGMIA/v12(E).asp]

2.
M. K. Bakula, M. E. Ozdemir and J. Pecaric, Hadamard type inequalities for m-convex and (${\alpha},\;m$)-convex functions, J. Inequal. Pure & Appl. Math., 9(2008), Article 96, [ONLINE: http://jipam.vu.edu.au].

3.
M. Klaricic Bakula, J. Pecaric, and M. Ribicic, Companion inequalities to Jensen's inequality for m-convex and (${\alpha},\;m$)-convex functions, J. Inequal. Pure & Appl. Math., 7(2006), Article 194, [ONLINE: http://jipam.vu.edu.au].

4.
N. S. Barnett, P. Cerone, S. S. Dragomir, M. R. Pinheiro and A. Sofo, Ostrowski type inequalities for functions whose modulus of derivatives are convex and applications, RGMIA Res. Rep. Coll., 5(2)(2002), Article 1, [ONLINE: http://www.staff.vu.edu.au/RGMIA/v5n2.asp].

5.
S. S. Dragomir, Y. J. Cho and S. S. Kim, Inequalities of Hadamard's type for Lipschitzian mappings and their applications, J. of Math. Anal. Appl., 245(2)(2000), 489-501. crossref(new window)

6.
S. S. Dragomir and A. Sofo, Ostrowski type inequalities for functions whose derivatives are convex, Proceedings of the 4th International Conference on Modelling and Simulation, November 11-13, 2002, Victoria University, Melbourne, Australia, RGMIA Res. Rep. Coll., 5(2002), Supplement, Article 30, [ONLINE: http://www.staff.vu.edu.au/RGMIA/v5(E).asp].

7.
V. G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approx. and Convex., Cluj-Napoca (Romania) (1993).

8.
E. Set, M. E. Ozdemir and M.Z. Sarikaya, New inequalities of Ostrowski's type for s-convex functions in the second sense with applications, arXiv:1005.0702v1 [math.CA], May 5, 2010.

9.
G. Toader, Some generalizations of the convexity, Proceedings of The Colloquium On Approximation and Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1984, 329-338.