Ostrowski's Type Inequalities for (α, m)-Convex Function

- Journal title : Kyungpook mathematical journal
- Volume 50, Issue 3, 2010, pp.371-378
- Publisher : Department of Mathematics, Kyungpook National University
- DOI : 10.5666/KMJ.2010.50.3.371

Title & Authors

Ostrowski's Type Inequalities for (α, m)-Convex Function

Ozdemir, Muhamet Emin; Kavurmaci, Havva; Set, Erhan;

Ozdemir, Muhamet Emin; Kavurmaci, Havva; Set, Erhan;

Abstract

In this paper, we establish new inequalities of Ostrowski's type for functions whose derivatives in absolute value are (, m)-convex.

Keywords

(, m)-Convex Function;m-Convex Function;Convex Function Ostrowski's Inequality;Hlder's Inequality;Power Mean Inequality;

Language

English

Cited by

1.

On Generalizations of the Hadamard Inequality for (α, m)-Convex Functions,Set, Erhan;Sardari, Maryam;Ozdemir, Muhamet Emin;Rooin, Jamal;

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

References

1.

M. Alomari, M. Darus, S. S. Dragomir and P. Cerone, Ostrowski's inequalities for functions whose derivatives are s-convex in the second sense, RGMIA Res. Rep. Coll., 12(2009), Supplement, Article 15. [ONLINE: http://www.staff.vu.edu.au/RGMIA/v12(E).asp]

2.

M. K. Bakula, M. E. Ozdemir and J. Pecaric, Hadamard type inequalities for m-convex and (${\alpha},\;m$ )-convex functions, J. Inequal. Pure & Appl. Math., 9(2008), Article 96, [ONLINE: http://jipam.vu.edu.au].

3.

M. Klaricic Bakula, J. Pecaric, and M. Ribicic, Companion inequalities to Jensen's inequality for m-convex and (${\alpha},\;m$ )-convex functions, J. Inequal. Pure & Appl. Math., 7(2006), Article 194, [ONLINE: http://jipam.vu.edu.au].

4.

N. S. Barnett, P. Cerone, S. S. Dragomir, M. R. Pinheiro and A. Sofo, Ostrowski type inequalities for functions whose modulus of derivatives are convex and applications, RGMIA Res. Rep. Coll., 5(2)(2002), Article 1, [ONLINE: http://www.staff.vu.edu.au/RGMIA/v5n2.asp].

5.

S. S. Dragomir, Y. J. Cho and S. S. Kim, Inequalities of Hadamard's type for Lipschitzian mappings and their applications, J. of Math. Anal. Appl., 245(2)(2000), 489-501.

6.

S. S. Dragomir and A. Sofo, Ostrowski type inequalities for functions whose derivatives are convex, Proceedings of the 4th International Conference on Modelling and Simulation, November 11-13, 2002, Victoria University, Melbourne, Australia, RGMIA Res. Rep. Coll., 5(2002), Supplement, Article 30, [ONLINE: http://www.staff.vu.edu.au/RGMIA/v5(E).asp].

7.

V. G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approx. and Convex., Cluj-Napoca (Romania) (1993).

8.

E. Set, M. E. Ozdemir and M.Z. Sarikaya, New inequalities of Ostrowski's type for s-convex functions in the second sense with applications, arXiv:1005.0702v1 [math.CA], May 5, 2010.

9.

G. Toader, Some generalizations of the convexity, Proceedings of The Colloquium On Approximation and Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1984, 329-338.