Advanced SearchSearch Tips
Preconditioning Cubic Spline Collocation Methods for a Coupled Elliptic Equation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 50, Issue 3,  2010, pp.419-431
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2010.50.3.419
 Title & Authors
Preconditioning Cubic Spline Collocation Methods for a Coupled Elliptic Equation
Shin, Byeong-Chun; Kim, Sang-Dong;
  PDF(new window)
A low-order finite element preconditioner is analyzed for a cubic spline collocation method which is used for discretizations of coupled elliptic problems derived from an optimal control problrm subject to an elliptic equation. Some numerical evidences are also provided.
Coupled elliptic equations;Cubic spline collocation methods;Finite element preconditioner;
 Cited by
P. Bochev and M. Gunzburger, Least-squares finite element methods for optimality systems arising in optimization and control problems, SIAM J. Numer. Anal., 43(2006), 2517-2543. crossref(new window)

Y. Chen, N. Yi and W. Liu, A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46(2008), 2254-2275. crossref(new window)

J. Douglas and T. Dupont, Collocation methods for parabolic equations in a single space variable, Lecture Notee in Mathematics 385, Springer-Verlag Press, Cambridge, UK, 2002.

S. C. Eisenstat, H. C. Elman, and M. H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20(1983), 345-357. crossref(new window)

A. Greenbaum, Iterative methods for solving linear systems, SIAM, Philadelphia, 1997.

M. Gunzburger, Perspectives in Flow Control and Optimization, Adv. Des. Control 5, SIAM, Philadelphia, 2002.

R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1994.

S. D. Kim, Piecewise bilinear preconditioning of high-order finite element methods, ETNA, 26(2007), 228-242.

S. Kim and S. D. Kim, Preconditioning on high-order element methods using Chebyshev-Gauss-Lobatto notes, Applied Numerical Mathematics, 59(2009) 316-333. crossref(new window)

S. D. Kim and S. Kim, Exponential decay of $C^1$-cubic splines vanishiing at two symmetric points in each knot interval, Numer. Math., 76(1997), 470-488.

S. D. Kim and S. V. Parter, Preconditioning Chebyshev spectral collocation method for elliptic partial differential equations, SIAM J. Numer. Anal., 33(1996), 2375-2400. crossref(new window)

S. D. Kim and S. V. Parter, Preconditioning cubic spline collocation discretizations of elliptic equations, Numer. Math., 72(1995), 39-72. crossref(new window)

S. D. Kim and B. C. Shin, On the exponential decay of $C^1$ cubic Lagrange splines on non-uniform meshes and for non-uniform data points, Houston J. of Math., 24(1998), 173-183.

Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric lienar systems, SIAM J. Sci. Comput., 7(1986), 856-869. crossref(new window)

L. N. Trefethen and D. B. Bau, Numerical linear algegra, SIAM, Philadelphia, 1997.