JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Dynamics of Recursive Sequence of Order Two
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 50, Issue 4,  2010, pp.483-497
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2010.50.4.483
 Title & Authors
Dynamics of Recursive Sequence of Order Two
Elsayed, Elsayed Mohammed;
  PDF(new window)
 Abstract
In this paper we study some qualitative behavior of the solutions of the difference equation , n=0,1,, where the initial conditions x-1, x0 are arbitrary real numbers and a, b, c, d are positive constants with .
 Keywords
difference equations;stability;periodicity;solution of the difference equation;
 Language
English
 Cited by
1.
ON A SYSTEM OF TWO NONLINEAR DIFFERENCE EQUATIONS OF ORDER TWO,;

Proceedings of the Jangjeon Mathematical Society, 2015. vol.18. 3, pp.353-368
2.
The expressions of solutions and periodicity for some nonlinear systems of rational difference equations,;

Advanced Studies in Contemporary Mathematics, 2015. vol.25. 3, pp.341-367
1.
The Form of the Solutions and Periodicity of Some Systems of Difference Equations, Discrete Dynamics in Nature and Society, 2012, 2012, 1  crossref(new windwow)
2.
Solution and Attractivity for a Rational Recursive Sequence, Discrete Dynamics in Nature and Society, 2011, 2011, 1  crossref(new windwow)
3.
Solutions of rational difference systems of order two, Mathematical and Computer Modelling, 2012, 55, 3-4, 378  crossref(new windwow)
4.
Global Attractivity and Periodic Character of Difference Equation of Order Four, Discrete Dynamics in Nature and Society, 2012, 2012, 1  crossref(new windwow)
5.
On the Solutions of a General System of Difference Equations, Discrete Dynamics in Nature and Society, 2012, 2012, 1  crossref(new windwow)
6.
On the solutions of systems of rational difference equations, Mathematical and Computer Modelling, 2012, 55, 7-8, 1987  crossref(new windwow)
7.
On a System of Difference Equations, Discrete Dynamics in Nature and Society, 2013, 2013, 1  crossref(new windwow)
 References
1.
M. Aloqeili, Dynamics of a rational difference equation, Appl. Math. Comp., 176(2)(2006), 768-774. crossref(new window)

2.
C. Cinar, On the positive solutions of the difference equation $x_{n+1}=\frac{x_{n-1}}{1+x_{n}x_{n-1}}$, Applied Mathematics and Computation, 150(2004), 21-24. crossref(new window)

3.
C. Cinar, On the positive solutions of the difference equation $x_{n+1}=\frac{ax_{n-1}}{1+bx_{n}x_{n-1}}$, Applied Mathematics and Computation, 156(2004), 587-590. crossref(new window)

4.
C. Cinar, On the difference equation $x_{n+1}=\frac{x_{n-1}}{-1+x_{n}x_{n-1}}$, Applied Mathematics and Computation, 158(2004), 813-816. crossref(new window)

5.
E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, Global attractivity and periodic character of a fractional difference equation of order three, Yokohama Math. J., 53(2007), 89-100.

6.
. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the difference equation $x_{n+1}=\frac{\alpha x_{n-k}}{\beta+\gamma\prod_{i=0}^{k}x_{n-i}}$, J. Conc. Appl. Math., 5(2)(2007), 101-113.

7.
E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, Qualitative behavior of higher order difference equation, Soochow Journal of Mathematics, 33(4)(2007), 861-873.

8.
E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the difference equation $x_{n+1}=\frac{a_{0}x_{n}+a_{1}x_{n-1}+...+a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+...b_{k}x_{n-k}}$, Mathematica Bohemica, 133(2)(2008), 133-147.

9.
E. M. Elabbasy and E. M. Elsayed, On the global attractivity of difference equation of higher order, Carpathian Journal of Mathematics, 24(2)(2008), 45-53.

10.
E. M. Elabbasy and E. M. Elsayed, On the solutions of a class of difference equations of higher order, International Journal of Mathematics and Statistics, 6(A09)(2010), 57-68.

11.
E. M. Elabbasy and E. M. Elsayed, Dynamics of a rational difference equation, Chinese Annals of Mathematics, Series B, 30(2)(2009), 187-198. crossref(new window)

12.
H. El-Metwally, E. A. Grove, and G. Ladas, A global convergence result with applications to periodic solutions, J. Math. Anal. Appl., 245(2000), 161-170. crossref(new window)

13.
H. El-Metwally, E. A. Grove, G. Ladas and H. D. Voulov, On the global attractivity and the periodic character of some difference equations, J. Differ. Equations Appl., 7(2001), 1-14. crossref(new window)

14.
H. El-Metwally, Global behavior of an economic model, Chaos, Solitons and Fractals, 33(2007), 994-1005. crossref(new window)

15.
H. El-Metwally and M. M. El-Afifi, On the behavior of some extension forms of some population models, Chaos, Solitons and Fractals, 36(2008), 104-114. crossref(new window)

16.
E. M. Elsayed, On the solution of recursive sequence of order two, Fasciculi Mathematici, 40(2008), 5-13.

17.
E. M. Elsayed, Dynamics of a recursive sequence of higher order, Communications on Applied Nonlinear Analysis, 16(2)(2009), 37-50.

18.
E. M. Elsayed, On the Difference Equation $x_{n+1}=\frac{x_{n-5}}{-1+x_{n-2}x_{n-5}$, International Journal of Contemporary Mathematical Sciences, 3(33)(2008), 1657-1664.

19.
E. M. Elsayed, Qualitative behavior of difference equation of order three, Acta Scientiarum Mathematicarum (Szeged), 75(1-2), 113-129.

20.
E. M. Elsayed, Qualitative behavior of s rational recursive sequence, Indagationes Mathematicae, New Series, 19(2)(2008), 189-201. crossref(new window)

21.
E. M. Elsayed, On the Global attractivity and the solution of recursive sequence, Studia Scientiarum Mathematicarum Hungarica, 47(3)(2010), 401-418. crossref(new window)

22.
E. M. Elsayed, Qualitative properties for a fourth order rational difference equation, Acta Applicandae Mathematicae, 110(2)(2010), 589-604. crossref(new window)

23.
E. M. Elsayed, Qualitative behavior of difference equation of order two, Mathematical and Computer Modelling, 50(2009), 1130-1141. crossref(new window)

24.
E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman & Hall / CRC Press, 2005.

25.
A. E. Hamza, S. G. Barbary, Attractivity of the recursive sequence $x_{n+1}=(\alpha-\beta x_{n})F(x_{n-1},\,...,\,x_{n-k})$, Mathematical and Computer Modelling, 48(11-12)(2008), 1744-1749. crossref(new window)

26.
T. F. Ibrahim, On the third order rational difference equation $x_{n+1}=\frac{x_{n}x_{n-2}}{x_{n-1}(a+bx_{n}x_{n-2})}$, Int. J. Contemp. Math. Sciences, 4(27)(2009), 1321-1334.

27.
V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.

28.
M. R. S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman & Hall / CRC Press, 2001.

29.
A. Rafiq, Convergence of an iterative scheme due to Agarwal et al., Rostock. Math. Kolloq., 61(2006), 95-105.

30.
M. Saleh and S. Abu-Baha, Dynamics of a higher order rational difference equation, Appl. Math. Comp., 181(2006), 84-102. crossref(new window)

31.
M. Saleh and M. Aloqeili, On the difference equation $x_{n+1}=A+\frac{x_{n}}{x_{n-k}}$, Appl. Math. Comp., 171(2005), 862-869. crossref(new window)

32.
D. Simsek, C. Cinar and I. Yalcinkaya, On the recursive sequence $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1}}$, Int. J. Contemp. Math. Sci., 1(10)(2006), 475-480.

33.
C. Wang, S. Wang and X. Yan, Global asymptotic stability of 3-species mutualism models with diffusion and delay effects, Discrete Dynamics in Natural and Science, Volume 2009, Article ID 317298, 20 pages.

34.
C. Wang, F. Gong, S. Wang, L. LI and Q. Shi, Asymptotic behavior of equilibrium point for a class of nonlinear difference equation, Advances in Difference Equations, Volume 2009, Article ID 214309, 8 pages.

35.
I. Yalcinkaya, C. Cinar and M. Atalay, On the solutions of systems of difference equations, Advances in Difference Equations, Vol. 2008, Article ID 143943, 9 pages, doi: 10.1155/2008/143943. crossref(new window)

36.
I. Yalcinkaya, On the global asymptotic stability of a second-order system of difference equations, Discrete Dynamics in Nature and Society, Vol. 2008, Article ID 860152, 12 pages, doi: 10.1155/2008/860152. crossref(new window)

37.
I. Yalcinkaya, C. Cinar and M. Atalay, On the solutions of systems of difference equations, Advances in Difference Equations, Vol. 2008, Article ID 143943, 9 pages, doi: 10.1155/2008/143943. crossref(new window)

38.
I. Yalcinkaya, On the global asymptotic stability of a second-order system of difference equations, Discrete Dynamics in Nature and Society, Vol. 2008, Article ID 860152, 12 pages, doi: 10.1155/2008/860152. crossref(new window)

39.
I. Yalcinkaya, On the difference equation $x_{n+1}=\alpha+\frac{x_{n-m}}{x^k_n}$, Discrete Dynamics in Nature and Society, Vol. 2008, Article ID 805460, 8 pages, doi: 10.1155/2008/805460. crossref(new window)

40.
E. M. E. Zayed and M. A. El-Moneam, On the rational recursive sequence $x_{n+1}=\frac{\alpha+{\beta}x_n+{\gamma}x_{n-1}}{A+Bx_n+Cx_{n-1}}$, Communications on Applied Nonlinear Analysis, 12(4)(2005), 15-28.

41.
E. M. E. Zayed and M. A. El-Moneam, On the rational recursive sequence $x_{n+1}=\frac{{\alpha}x_n+{\beta}x_{n-1}+{\gamma}x_{n-2}+{\delta}x_{n-3}}{Ax_n+Bx_{n-1}+Cx_{n-2}+Dx_{n-3}}$, Comm. Appl. Nonlinear Analysis, 12(2005), 15-28.