JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Some Global Estimates for the Jacobians of Quasiregular Mappings
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 51, Issue 1,  2011, pp.29-36
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2011.51.1.029
 Title & Authors
Some Global Estimates for the Jacobians of Quasiregular Mappings
Gao, Hongya; Ren, Suna; Sun, Lanxiang;
  PDF(new window)
 Abstract
Some global estimates for the Jacobians of quasiregular mappings f = (, , , ) of the Sobolev class (, ) in -domains and John domains are established.
 Keywords
Jacobian;quasiregular mapping;-domain;John domain;
 Language
English
 Cited by
 References
1.
G. Bao and S. Ding, Invariance properties of $L^{\varphi}({\mu})$-domains under some mappings, J. Math. Anal. Appl., 259(2001), 241-252. crossref(new window)

2.
S. Ding and C. A. Nolder, $L^{s}({\mu})$-averaging domains, J. Math. Anal. Appl., 283(2003), 85-99. crossref(new window)

3.
F. W. Gehring, The $L^p$-integrability of partial derivatives of a quasiconformal mapping, Acta Math., 130(1973), 265-277. crossref(new window)

4.
J. Hogan, C. Li, A. McInton and K. Zhang, Global higher integrability of Jacobians on bounded domains, Ann. Inst. H.Poincare Anal., 17(2000), 193-217. crossref(new window)

5.
T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal., 119(1992), 129-143. crossref(new window)

6.
T. Iwaniec and S. Ding, Global estimates for the Jacobians of orientation-preserving mappings, Compu. Math. Appl., 50(2005), 707-718. crossref(new window)

7.
T. Iwaniec, G. Martin, Geometric function theory and nonlinear analysis, Clarendon Press, Oxford, 2001.

8.
S. Muller, Higher integrability of determinants and week convergence in $L^1$, J. Reine Angew. Math., 412(1990), 20-34.

9.
C. A. Nolder, Hardy-Littlewood theorems for A-harmonic tensors, Illinois J. Math., 43(1999), 613-631.