JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Zero-divisors of Semigroup Modules
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 51, Issue 1,  2011, pp.37-42
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2011.51.1.037
 Title & Authors
Zero-divisors of Semigroup Modules
Nasehpour, Peyman;
  PDF(new window)
 Abstract
Let M be an R-module and S a semigroup. Our goal is to discuss zero-divisors of the semigroup module M[S]. Particularly we show that if M is an R-module and S a commutative, cancellative and torsion-free monoid, then the R[S]-module M[S] has few zero-divisors of size n if and only if the R-module M has few zero-divisors of size n and Property (A).
 Keywords
Dedekind-Mertens Lemma;Semigroup modules;Few zero-divisors;Property (A);McCoy`s property;Primal modules;
 Language
English
 Cited by
 References
1.
J. T. Arnold and R. Gilmer, On the content of polynomials, Proc. Amer. Math. Soc. 40(1970), 556-562.

2.
D. D. Anderson and B. G. Kang, Content formulas for polynomials and power series and complete integral closure, J. Algebra, 181(1996), 82-94. crossref(new window)

3.
W. Bruns and A. Guerrieri, The Dedekind-Mertens formula and determinantal rings, Proc. Amer. Math. Soc. 127(1999), 657-663. crossref(new window)

4.
W. Bruns and J. Herzog, Cohen-Macaulay Rings, revised edn., Cambridge, 1998.

5.
J. Dauns, Primal modules, Comm. Algebra 25(1997), 2409-2435. crossref(new window)

6.
R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.

7.
R. Gilmer, Commutative Semigroup Rings, The University of Chicago Press, 1984.

8.
R. Gilmer, A. Grams and T. Parker, Zero divisors in power series rings, J. Reine Angew. Math. 278(1975), 145-164.

9.
W. Heinzer and C. Huneke, The Dedekind-Mertens Lemma and the content of polynomials, Proc. Amer. Math. Soc. 126(1998), 1305-1309. crossref(new window)

10.
J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, 1988.

11.
J. A. Huckaba and J. M. Keller, Annihilation of ideals in commutative rings, Pac. J. Math. 83(1979), 375-379. crossref(new window)

12.
B. D. Janeway, Zero divisors in commutative semigroup rings, Comm. Algebra 12(1984), 1877-1887. crossref(new window)

13.
I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.

14.
N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly, 49(1942), 286-295. crossref(new window)

15.
P. Nasehpour, Content algebras over commutative rings with zero divisors, arXiv:0807.1835v3, preprint.

16.
D. G. Northcott, A generalization of a theorem on the content of polynomials, Proc. Cambridge Phil. Soc. 55(1959), 282-288. crossref(new window)

17.
P. Nasehpour and Sh. Payrovi, Modules having few zero-divisors, to appear in Comm. Algebra.

18.
P. Nasehpour and S. Yassemi, M-cancellation Ideals, Kyungpook Math. J., 40(2000), 259-263.

19.
J. Ohm and D. E. Rush, Content modules and algebras, Math. Scand. 31 (1972), 49-68.

20.
D. E. Rush, Content algebras, Canad. Math. Bull. Vol. 21(3)(1978), 329-334. crossref(new window)

21.
H. Tsang, Gauss' lemma, dissertation, University of Chicago, Chicago, 1965.

22.
O. Zariski and P. Samuel, Commutative Algebra, Vol. I, Van Nostrand, New York, 1958.