JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On Partitioning and Subtractive Ideals of Ternary Semirings
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 51, Issue 1,  2011, pp.69-76
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2011.51.1.069
 Title & Authors
On Partitioning and Subtractive Ideals of Ternary Semirings
Chaudhari, Jaiprakash Ninu; Ingale, Kunal Julal;
  PDF(new window)
 Abstract
In this paper, we introduce a partitioning ideal of a ternary semiring which is useful to develop the quotient structure of ternary semiring. Indeed we prove : 1) The quotient ternary semiring S/ is essentially independent of choice of Q. 2) If f : S S` is a maximal ternary semiring homomorphism, then S/ker S`. 3) Every partitioning ideal is subtractive. 4) Let I be a Q-ideal of a ternary semiring S. Then A is a subtractive ideal of S with I A if and only if A/
 Keywords
Ternary semiring;subtractive ideal;partitioning ideal;quotient ternary semiring;maximal homomorphism;isomorphism;
 Language
English
 Cited by
1.
On Partitioning and Subtractive Ideals of Ternary Semirings,;;

Kyungpook mathematical journal, 2011. vol.51. 1, pp.69-76 crossref(new window)
 References
1.
Paul J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc., 21(1969), 412-416. crossref(new window)

2.
Paul J. Allen, J. Neggers and H. S. Kim, Ideal theory in commutative A-semirings, Kyungpook, Math. Journal, 46(2006), 261-271.

3.
Shahabaddin Ebrahimi Atani, The ideal theory in quotient of commutative semirings, Glasnik Matematicki, 42(62)(2007), 301-308. crossref(new window)

4.
T. K. Dutta and S. Kar, On Regular Ternary Semirings, Advances in Algebra, Proceedings of the ICM Satellite Conference in Algebra and Related Topics, World Scientific (2003), 343-355.

5.
T. K. Dutta and S. Kar, On The Jacobson Radical of A Ternary Semiring, Southeast Asian Bulletin of Mathematics, 28(1)(2004), 1-13.

6.
T. K. Dutta and S. Kar, On Prime Ideals And Prime Radical of Ternary Semirings, Bull. Cal. Math. Soc., 97(5)(2005), 445-454.

7.
T. K. Dutta and S. Kar, A Note on Regular Ternary Semirings, Kyungpook Math. J., 46(2006), 357-365.

8.
J. S. Golan, Semiring and their Applications, Kluwer Academic publisher Dordrecht, 1999.

9.
Vishnu Gupta and J. N. Chaudhari, On Right ${\pi}$-Regular Semirings, Sarajevo Journal of Mathematics, 2(14)(2006), 3-9.

10.
Vishnu Gupta and J. N. Chaudhari, On Partitioning ideals of Semirings, Kyungpook Math. Journal, 46(2006), 181-184.

11.
S. Kar, Ideal Theory in the Ternary Semiring $\mathbb{Z}^{-}_{0}$, Bull. Malaysian. Math. Sci. Soc., (2), to appear.

12.
D. H. Lehmer, A ternary analogue of abelian groups, American Journal of Mathematics, 59(1932), 329-338.