JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Voronovskaya Type Theorem on Modified Post-Widder Operators Preserving x2
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 51, Issue 1,  2011, pp.87-91
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2011.51.1.087
 Title & Authors
A Voronovskaya Type Theorem on Modified Post-Widder Operators Preserving x2
Siddiqui, Mohammad Arif; Agrawal, Raksha Rani;
  PDF(new window)
 Abstract
In this paper we obtain a Voronvskaya type theorem for modi ed Post-Widde operators.
 Keywords
Post-Widder operators;modulus of continuity;The Voronovskaya type theorem;
 Language
English
 Cited by
 References
1.
Altomare F., Campiti M., Korovkin-type Approximation Theory and its Application, in: Walter de Gruyter Studies in Math., vol. 17, de Gruyter and Co., Berlin, 1994.

2.
Ditzian Z., Totik V., Moduli of Smoothness, Springer-Verlag, New York, 1987.

3.
Duman O., Ozarslan M. A., Szasz-Mirakjan type operators providing a better error estimation, Applied Math. Letters, 20(2007) 1184-1188. crossref(new window)

4.
Duman O., Ozarslan M. A., MKZ type operators providing a better estimation on [1/2, 1), Canadian Math. Bull., 50(2007), 434-439. crossref(new window)

5.
King J. P., Positive linear operators which preserve $x^2$, Acta Math. Hungar., 99(3)(2003), 203-208. crossref(new window)

6.
Rempulska L., Skorupka M., On strong approximation applies to Post-Widder operators, Anal. in Theory and Applic., 22(2)(2006), 172-182. crossref(new window)

7.
Rempulska L., Skorupka M., On approximation by Post-Widder operators preserving $x^2$, Kyungpook Math. J., 49(2009), 57-65. crossref(new window)