Advanced SearchSearch Tips
On the Semi-threading of Knot Diagrams with Minimal Overpasses
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 51, Issue 2,  2011, pp.205-215
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2011.51.2.205
 Title & Authors
On the Semi-threading of Knot Diagrams with Minimal Overpasses
Chung, Jae-Wook; Jeong, Seul-Gi; Kim, Dong-Seok;
  PDF(new window)
Given a knot diagram D, we construct a semi-threading circle of it which can be an axis of D as a closed braid depending on knot diagrams. In particular, we consider semi-threading circles of minimal diagrams of a knot with respect to overpasses which give us some information related to the braid index. By this notion, we try to give another proof of the fact that, for every nontrivial knot K, the braid index b(K) of K is not less than the minimum number l(K) of overpasses of diagrams. Also, they are the same for a torus knot.
Common fixed points;non-Lipschitzian mappings;total asymptotically nonexpansive mappings;strong convergence;
 Cited by
C. Adams, The Knot Book, W. H. Freeman & Co., New York, 1994.

J. W. Alexander, A lemma on systems of knotted curves., Proc. Nat. Acad. Sci. U. S. A., 9(1923), 93-95. crossref(new window)

J. -W. Chung and X. -S. Lin, On the bridge number of knot diagrams with minimal crossings., Math. Proc. Camb. Phil. Soc., 137(2004), 617-632. crossref(new window)

A. A. Markov, Uber die freie Aquivalenz geschlossener Zopfe, Recueil Mathematique Moscou, 1(1935), 73-78.

H. R. Morton, Threading knot diagrams., Math. Proc. Camb. Phil. Soc., 99(1986), 247-260. crossref(new window)

K. Murasugi, On the braid index of alternating links, Trans. Amer. Math. Soc., 326(1991), 237-260. crossref(new window)

H. Schubert, Uber eine numerische Knoteninvariante, Math. Z., 61(1954), 245-288. crossref(new window)