JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Differential Sandwich Theorem for Multivalent Meromorphic Functions associated with the Liu-Srivastava Operator
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 51, Issue 2,  2011, pp.217-232
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2011.51.2.217
 Title & Authors
Differential Sandwich Theorem for Multivalent Meromorphic Functions associated with the Liu-Srivastava Operator
Ali, Rosihan M.; Chandrashekar, R.; Lee, See-Keong; Swaminathan, A.; Ravichandran, V.;
  PDF(new window)
 Abstract
Differential subordination and superordination results are obtained for multivalent meromorphic functions associated with the Liu-Srivastava linear operator in the punctured unit disk. These results are derived by investigating appropriate classes of admissible functions. Sandwich-type results are also obtained.
 Keywords
Hypergeometric function;subordination;superordination;Liu-Srivastava linear operator;convolution;
 Language
English
 Cited by
1.
Differential Subordination and Superordination for Srivastava-Attiya Operator, International Journal of Differential Equations, 2011, 2011, 1  crossref(new windwow)
 References
1.
R. Aghalary, R. M. Ali, S. B. Joshi and V. Ravichandran, Inequalities for analytic functions defined by certain linear operator, Internat. J. Math. Sci., 4(2005), 267-274. crossref(new window)

2.
R. Aghalary, S. B. Joshi, R. N. Mohapatra and V. Ravichandran, Subordinations for analytic functions defined by the Dziok-Srivastava linear operator, Appl. Math. Comput., 187(2007), 13-19. crossref(new window)

3.
R. M. Ali, R. Chandrashekar, S. K. Lee, A. Swaminathan and V. Ravichandran, Differential sandwich theorem for multivalent analytic functions associated with the Dziok-Srivastava operator, Tamsui Oxf. J. Math. Sc., to appear.

4.
R. M. Ali and V. Ravichandran, Differential subordination for meromorphic functions defined by a linear operator, J. Anal. Appl. 2(2004), 149-158.

5.
R. M. Ali, V. Ravichandran and N. Seenivasagan, Differential subordination and superordination of analytic functions defined by the Dziok-Srivastava linear operator, Journal of Franklin Institute, to appear.

6.
R. M. Ali, V. Ravichandran and N. Seenivasagan, Differential subordination and superordination of analytic functions de ned by the multiplier transformation, Math. Inequal. Appl., 12(2009), 123-139.

7.
R. M. Ali, V. Ravichandran and N. Seenivasagan, Differential subordination and su-perordination for meromorphic functions de ned by certain multiplier transformation, Bull. Malaysian Math. Sci. Soc., 33(2010), 311-324.

8.
R. M. Ali, V. Ravichandran and N. Seenivasagan, Subordination and superordination on Schwarzian derivatives, J. Inequal. Appl., 2008, Article ID 712328, 1-18.

9.
R. M. Ali, V. Ravichandran and N. Seenivasagan, Subordination and superordina- tion of the Liu-Srivastava linear operator on meromorphic functions, Bull. Malaysian Math. Sci. Soc., 31(2008), 193-207.

10.
M. K. Aouf and H. M. Hossen, New criteria for meromorphic p-valent starlike func- tions, Tsukuba J. Math., 17(1993), 481-486.

11.
N. E. Cho and I. H. Kim, Inclusion properties of certain classes of meromorphic func- tions associated with the generalized hypergeometric function, Appl. Math. Comput., 187(2007), 115-121. crossref(new window)

12.
J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the gen- eralized hypergeometric function, Appl. Math. Comput., 103(1999), 1-13.

13.
Y. C. Kim and H. M. Srivastava, Inequalities involving certain families of integral and convolution operators, Math. Inequal. Appl., 7(2004), 227-234.

14.
J-L. Liu, A linear operator and its applications on meromorphic p-valent functions, Bull. Inst. Math. Acad. Sinica, 31(2003), 23-32.

15.
J-L. Liu and S. Owa, On certain meromorphic p-valent functions, Taiwanese J. Math., 2(1998), 107-110.

16.
J-L. Liu and H. M. Srivastava, A linear operator and associated families of meromor- phically multivalent functions, J. Math. Anal. Appl., 259(2001), 566-581. crossref(new window)

17.
J-L. Liu and H. M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Modelling, 39(2004), 21-34. crossref(new window)

18.
J-L. Liu and H. M. Srivastava, Subclasses of meromorphically multivalent functions associated with a certain linear operator, Math. Comput. Modelling, 39(2004), 35-44. crossref(new window)

19.
S. S. Miller and P. T. Mocanu, Differential Subordinations, Dekker, New York, 2000.

20.
S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Variables Theory Appl., 48(2003), 815-826. crossref(new window)

21.
S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39(1987), 1057-1077. crossref(new window)

22.
R. K. Raina and H. M. Srivastava, A new class of meromorphically multivalent func- tions with applications to generalized hypergeometric functions, Math. Comput. Mod- elling, 43(2006), 350-356. crossref(new window)

23.
H. M. Srivastava and J. Patel, Some subclasses of multivalent functions involving a certain linear operator, J. Math. Anal. Appl., 310(2005), 209-228. crossref(new window)

24.
H. M. Srivastava, D.-G. Yang and N-E. Xu, Subordinations for multivalent analytic functions associated with the Dziok-Srivastava operator, Integral Transforms Spec. Funct., 20(2009), 581-606. crossref(new window)

25.
B. A. Uralegaddi and C. Somanatha, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc., 43(1991), 137-140. crossref(new window)

26.
D. Yang, On a class of meromorphic starlike multivalent functions, Bull. Inst. Math. Acad. Sinica, 24(1996), 151-157.

27.
D. Yang, Certain convolution operators for meromorphic functions, Southeast Asian Bull. Math., 25(2001), 175-186. crossref(new window)