JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Coefficient Inequalities for Certain Subclasses of Analytic Functions Defined by Using a General Derivative Operator
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 51, Issue 3,  2011, pp.241-250
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2011.51.3.241
 Title & Authors
Coefficient Inequalities for Certain Subclasses of Analytic Functions Defined by Using a General Derivative Operator
Bulut, Serap;
  PDF(new window)
 Abstract
In this paper, we define new classes of analytic functions using a general derivative operator which is a unification of the Slgean derivative operator, the Owa-Srivastava fractional calculus operator and the Al-Oboudi operator, and discuss some coefficient inequalities for functions belong to this classes.
 Keywords
Analytic function;Slgean derivative operator;Owa-Srivastava fractional calculus operator;Al-Oboudi operator;
 Language
English
 Cited by
1.
Applications of Fractionalq-Calculus to Certain Subclass of Analyticp-Valent Functions with Negative Coefficients, Abstract and Applied Analysis, 2015, 2015, 1  crossref(new windwow)
2.
Convexity and Spirallikeness Conditions for Two New General Integral Operators, Journal of Mathematics, 2013, 2013, 1  crossref(new windwow)
 References
1.
M. Acu and S. Owa, Convex functions associated with some hyperbola, J. Approx. Theory Appl., 1(2005), 37-40.

2.
F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci. 2004, no. 25-28, 1429-1436. crossref(new window)

3.
F. M. Al-Oboudi and K. A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl., 339(2008), 655-667. crossref(new window)

4.
R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 28(1997), 17-32.

5.
C. Caratheodory, Uber den variabilit¨atsbereich der Fourier'schen konstanten von possitiven harmonischen funktionen, Rend. Circ. Palermo, 32(1911), 193-217. crossref(new window)

6.
B. A. Frasin, Family of analytic functions of complex order, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 22(2006), 179-191.

7.
A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56(1991), 87-92.

8.
S. Owa, On the distortion theorems. I, Kyungpook Math. J. 18(1978), 53-59.

9.
S. Owa, Y. Polatoglu and E. Yavuz, Coefficient inequalities for classes of uniformly starlike and convex functions, J. Inequal. Pure Appl. Math., 7(2006), Article 160, 5 pp.

10.
S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39(1987), 1057-1077. crossref(new window)

11.
M. S. Robertson, On the theory of univalent functions, Ann. of Math., 37(2)(1936), 374-408. crossref(new window)

12.
F. Ronning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 45(1991), 117-122.

13.
F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. ,118(1993), 189-196. crossref(new window)

14.
G. S. Salagean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math., vol. 1013, Springer, Berlin, 1983, pp. 362-372. crossref(new window)

15.
S. Shams, S. R. Kulkarni and J. M. Jahangiri, Classes of uniformly starlike and convex functions, Int. J. Math. Math. Sci., 55(2004), 2959-2961. crossref(new window)

16.
H. M. Srivastava, A. K. Mishra and M. K. Das, A nested class of analytic functions defined by fractional calculus, Commun. Appl. Anal., 2(1998), 321-332.

17.
H. M. Srivastava and A. K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Comput. Math. Appl., 39(2000), 57-69.

18.
H. M. Srivastava and S. Owa, (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Ellis Horwood Series: Mathematics and Its Applications, Ellis Horwood, Chichester, UK; JohnWiley & Sons, New York, NY, USA, 1989.