JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On Seifert Matrices of Symmetric Links
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 51, Issue 3,  2011, pp.261-281
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2011.51.3.261
 Title & Authors
On Seifert Matrices of Symmetric Links
Bae, Yong-Ju; Lee, In-Sook;
  PDF(new window)
 Abstract
In this paper, we will construct symmetric links by using the method adapted from the graph theory, and study a Seifert matrix of a symmetric link from the information of the Seifert matrix of the base link and the corresponding group action.
 Keywords
symmetric link;periodic link;Seifert matrix;Alexander polynomial;determinant of a link;signature of a link;
 Language
English
 Cited by
1.
On Gauss diagrams of periodic virtual knots, Journal of Knot Theory and Its Ramifications, 2015, 24, 10, 1540008  crossref(new windwow)
 References
1.
Y. Choi, M. -J. Jeong and C. -Y. Park, Twist of knots and the Q -polynomials, Kyungpook Math. J., 44(2004), 449-467.

2.
S. Garoufalidis, Signatures of links and finite type invariants of cyclic branched covers, Tel Aviv Topology Conference: Rothenberg Festschrift, (1998), 87-97, Contemp. Math., 231, Amer. Math. Soc., Providence, RI, 1999.

3.
J. L. Gross and T. W. Tucker, Topological graph theory, John Wiley & Sons, 1987.

4.
L. H. Kauffman and L. R. Taylor, Signature of links, Trans. Amer. Math. Soc., 216(1976), 351-365. crossref(new window)

5.
A. Kawauchi, A survey of knot theory, Birkhauser -Verlag,Basel, Boston, and Berlin, 1996.

6.
K. H. Ko and W. T. Song, Seifert matrices of periodic knots, J. Knot Theory Ramifications, 16(1)(2007), 45-57. crossref(new window)

7.
S. Y. Lee, M. -S. Park and M. Seo, The Seifert matrices of periodic links with rational quotients, Kyungpook Math. J., 47(2)(2007), 295-309.

8.
J. Levine, The role of the Seifert matrix in knot theory, Actes du Congres International des Mathematiciens (Nice, 1970), Tome 2, pp. 95-98. Gauthier-Villars, Paris, 1971.

9.
W. Lickorish, An Introduction to Knot Theory, Springer-Verlag New York, Inc., 1997.

10.
Y. Miyazawa, Knots with a trivial coefficient polynomial, Kyungpook Math. J., 49(4)(2009), 801-809. crossref(new window)

11.
K. Murasugi, On the signature of links, Topology 9, (1970), 283-298. crossref(new window)

12.
H. Seifert, U ber das geschlecht von knoten, Math. Ann, 110, 1934.

13.
H. F. Trotter, On S-equivalence of Seifert matrices, Invent. Math., 20(1973), 173-207. crossref(new window)

14.
A. White, Graphs, Groups and Surfaces, Elsevier Science Publishers B.V, 1984.