JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Path-Connectivity of Two-Interval MSF Wavelets
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 51, Issue 3,  2011, pp.293-300
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2011.51.3.293
 Title & Authors
Path-Connectivity of Two-Interval MSF Wavelets
Singh, Divya;
  PDF(new window)
 Abstract
In this paper, we obtain that the space of minimally supported frequency wavelets, the supports of whose Fourier transforms consist of two intervals, is path-connected.
 Keywords
Wavelet set;MSF wavelet;Multiresolution analysis;
 Language
English
 Cited by
 References
1.
X. Dai and D. R. Larson, Wandering vectors for unitary systems and orthogonal wavelets, Mem. Amer. Math. Soc., 134(1998), no. 640, MR 98m: 47067.

2.
X. Fang and X. Wang, Construction of minimally-supported-frequency wavelets, J. Fourier Anal. Appl., 2(1996), 315-327.

3.
Y. Ha, H. Kang, J. Lee and J. K. Seo, Unimodular wavelets for $L^{2}$ and the Hardy space $H^{2}$, Michigan Math. J., 41(1994), 345-361. crossref(new window)

4.
E. Hernandez and G. Weiss, A First Course on Wavelets, CRC Press, 1996.

5.
Z. Li, X. Dai, Y. Diao and W. Huang, The Path-connectivity of MRA wavelets in $L^{2}(R^{d})$, Illinois J. Math., to appear.

6.
Z. Li, X. Dai, Y. Diao and J. Xin, Multipliers, phases and connectivity of MRA wavelets in $L^{2}(R^{2})$, J. Fourier Anal. Appl., 16(2010), 155-176. crossref(new window)

7.
S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^2(R)$, Trans. Amer. Math. Soc., 315(1989), 69-87. crossref(new window)

8.
D. Speegle, The s-elementary wavelets are path-connected, Proc. Amer. Math. Soc., 127(1999), 223-233. crossref(new window)

9.
TheWutam Consortium, Basic properties of wavelets, J. Fourier Anal. Appl., 4(1998), 575-594. crossref(new window)