Advanced SearchSearch Tips
On *-bimultipliers, Generalized *-biderivations and Related Mappings
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 51, Issue 3,  2011, pp.301-309
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2011.51.3.301
 Title & Authors
On *-bimultipliers, Generalized *-biderivations and Related Mappings
Ali, Shakir; Khan, Mohammad Salahuddin;
  PDF(new window)
In this paper we dene the notions of left *-bimultiplier, *-bimultiplier and generalized *-biderivation, and to prove that if a semiprime *-ring admits a left *-bimultiplier M, then M maps R R into Z(R). In Section 3, we discuss the applications of theory of *-bimultipliers. Further, it was shown that if a semiprime *-ring R admits a symmetric generalized *-biderivation G : R R R with an associated nonzero symmetric *-biderivation R R R, then G maps R R into Z(R). As an application, we establish corresponding results in the setting of -algebra.
Prime(semiprime) *-ring;-algebra;left *-bimultiplier;*-bimultiplier;generalized *-biderivation;generalized reverse *-biderivation;
 Cited by
On Jordan ∗-mappings in rings with involution, Journal of the Egyptian Mathematical Society, 2016, 24, 1, 15  crossref(new windwow)
GENERALIZED (α, β)*-DERIVATIONS AND RELATED MAPPINGS IN SEMIPRIME *-RINGS, Asian-European Journal of Mathematics, 2012, 05, 02, 1250015  crossref(new windwow)
Shakir Ali, On generalized $\ast$-derivations in $\ast$-rings, Plastin Journal of Mathematics, (submitted for publications).

P. Ara and M. Mathieu, Local Multipliers of $C^{\ast}$-Algebras, Springer Monograph in Mathematics, Springer-Verlag, London, 2003.

M. Ashraf and Shakir Ali, On $({\alpha}, {beta})^{\ast}$-derivations in $H^{\ast}$-algebras, Advances in Algebra, 2(1)(2009), 23-31.

H. E. Bell and W. S. Martindale III, Centralizing mappings of semiprime rings, Canad. Math. Bull., 30(1987), 92-101. crossref(new window)

M. Bresar and J. Vukman, On some additive mappings in rings with involution, Aequationes Math., 38(1989), 178-185. crossref(new window)

M. Bresar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc., 110(1990), 7-16. crossref(new window)

M. Bresar, W. S. Martindale III and C. R. Miers, Centralizing maps in prime rings with involution, J. Algebra, 161(1993), 432-357. crossref(new window)

I. N. Herstein, Rings with involution, The Univ. of Chicago Press, Chicago 1976.

B. Hvala, Generalized derivations in rings, Comm. Algebra, 26(4)(1998), 1147-1166. crossref(new window)

G. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glasnik Math., 15(35)(1980), 279-282.

G. Maksa, On the trace of symmetric biderivations, C. R. Math. Rep. Acad. Sci. Canada, 9(1987), 303-307.

N. M. Muthana, Rings endowed with biderivations and other biadditive mappings, Ph. D. Dissertation, Girls College of Education Jeddeh, Saudi Arbia, 2005.

N. M. Muthana, Left centralizer traces, generalized derivation, left bimultiplier, The Aligarh Bull. Maths., 26(2)(2007), 33-45.

E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8(1957), 1093-1100. crossref(new window)

B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carol., 32(1991), 609-614.