On ^{*}-bimultipliers, Generalized ^{*}-biderivations and Related Mappings

- Journal title : Kyungpook mathematical journal
- Volume 51, Issue 3, 2011, pp.301-309
- Publisher : Department of Mathematics, Kyungpook National University
- DOI : 10.5666/KMJ.2011.51.3.301

Title & Authors

On ^{*}-bimultipliers, Generalized ^{*}-biderivations and Related Mappings

Ali, Shakir; Khan, Mohammad Salahuddin;

Ali, Shakir; Khan, Mohammad Salahuddin;

Abstract

In this paper we dene the notions of left *-bimultiplier, *-bimultiplier and generalized *-biderivation, and to prove that if a semiprime *-ring admits a left *-bimultiplier M, then M maps R R into Z(R). In Section 3, we discuss the applications of theory of *-bimultipliers. Further, it was shown that if a semiprime *-ring R admits a symmetric generalized *-biderivation G : R R R with an associated nonzero symmetric *-biderivation R R R, then G maps R R into Z(R). As an application, we establish corresponding results in the setting of -algebra.

Keywords

Prime(semiprime) *-ring;-algebra;left *-bimultiplier;*-bimultiplier;generalized *-biderivation;generalized reverse *-biderivation;

Language

English

Cited by

References

1.

Shakir Ali, On generalized $\ast$ -derivations in $\ast$ -rings, Plastin Journal of Mathematics, (submitted for publications).

2.

P. Ara and M. Mathieu, Local Multipliers of $C^{\ast}$ -Algebras, Springer Monograph in Mathematics, Springer-Verlag, London, 2003.

3.

M. Ashraf and Shakir Ali, On $({\alpha}, {beta})^{\ast}$ -derivations in $H^{\ast}$ -algebras, Advances in Algebra, 2(1)(2009), 23-31.

4.

H. E. Bell and W. S. Martindale III, Centralizing mappings of semiprime rings, Canad. Math. Bull., 30(1987), 92-101.

5.

M. Bresar and J. Vukman, On some additive mappings in rings with involution, Aequationes Math., 38(1989), 178-185.

6.

M. Bresar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc., 110(1990), 7-16.

7.

M. Bresar, W. S. Martindale III and C. R. Miers, Centralizing maps in prime rings with involution, J. Algebra, 161(1993), 432-357.

8.

I. N. Herstein, Rings with involution, The Univ. of Chicago Press, Chicago 1976.

10.

G. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glasnik Math., 15(35)(1980), 279-282.

11.

G. Maksa, On the trace of symmetric biderivations, C. R. Math. Rep. Acad. Sci. Canada, 9(1987), 303-307.

12.

N. M. Muthana, Rings endowed with biderivations and other biadditive mappings, Ph. D. Dissertation, Girls College of Education Jeddeh, Saudi Arbia, 2005.

13.

N. M. Muthana, Left centralizer traces, generalized derivation, left bimultiplier, The Aligarh Bull. Maths., 26(2)(2007), 33-45.

15.

B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carol., 32(1991), 609-614.