JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Some Properties of the Closure Operator of a Pi-space
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 51, Issue 3,  2011, pp.311-322
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2011.51.3.311
 Title & Authors
Some Properties of the Closure Operator of a Pi-space
Mao, Hua; Liu, Sanyang;
  PDF(new window)
 Abstract
In this paper, we generalize the definition of a closure operator for a finite matroid to a pi-space and obtain the corresponding closure axioms. Then we discuss some properties of pi-spaces using the closure axioms and prove the non-existence for the dual of a pi-space. We also present some results on the automorphism group of a pi-space.
 Keywords
pi-space;closure operator;closed set;dual;automorphism;
 Language
English
 Cited by
 References
1.
D. Betten and W. Wenzel, On linear spaces and matroids of arbitrary cardinality, Algebra Universalis, 49(2003), 259-288. crossref(new window)

2.
G. Birkhoff, Lattice Theory, 3rd. ed. Amer. Math. Society, Providence, 1967.

3.
G. Gratzer, General Lattice Theory, 2nd. ed. Birkhauser Verlag, Basel, 1998.

4.
T. W. Hungerford, Algebra, Springer-Verlag, New York, 1974.

5.
F. Maeda and S. Maeda, Theory of Symmetric Lattices, Springer-Verlag, Berlin, 1970.

6.
H. Mao and S. Liu, Remarks on external elements in independence spaces, Southeast Asian Bulletin of Mathematics, 29(2005), 939-944.

7.
H. Mao, On geometric lattices and matroids of arbitrary cardinality, Ars Combinatoria, 8(2006), 23-32.

8.
H. Mao, An axiom scheme for cyclic ats of a matroid of arbitrary cardinality, International J. of Pure and Appl. Math., 41(8)(2007), 1107-1122.

9.
H. Mao, Characterization of disconnected matroids, Algebra Colloquium, 15(1)(2008), 129-134. crossref(new window)

10.
H. Mao, Single element extensions of matroids of arbitrary cardinality, Acta Mathematica Sinica (Chinese series), 50(6)(2007), 1271-1280(in Chinese).

11.
H. Mao, Independence spaces generated by a graph, East-West J. of Math., 9(1)(2007), 63-68.

12.
H. Mao and G.Wang, Some properties of base-matroids of arbitrary cardinality, Rocky Mountain J. of Math., 409(1)(2010), 291-303.

13.
H. Mao, The sub-independence-space, Chinese Quart. J. of Math., 25(2)(2010), 293-299.

14.
H. Mao, Paving matroids of arbitrary cardinality, Ars Combinatoria, 90(2009), 245-256.

15.
H. Mao and G. Wang, On the basis graph of a matroid of arbitrary cardinality, Advances in Pure and Appl. Math., (2)(2010)275-284.

16.
H. Mao and S. Liu, Relations between some axiom systems for matroids and the automorphism groups of a matroid, J. of Xidian University, 28(1)(2001), 48-51(in Chinese)

17.
J. Oxley, Infinite Matroids, in Matroid Application, ed. by Neil White, Cambridge University Press, Cambridge, 1992, 73-90.

18.
J. Oxley, Matroid Theory, Oxford University Press, New York, 1992.

19.
M. Stern, Semimodular Lattices: Theory and Applications, Cambridge University Press, Cambridge, 1999.

20.
D. J. A. Welsh, Matroid Theory, Academic Press, London, 1976.

21.
N. White, Theory of Matroids, Cambridge University Press, Cambridge, 1976.