JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Related Fixed Point Theorem for Six Mappings on Three Fuzzy Metric Spaces
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 51, Issue 4,  2011, pp.365-374
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2011.51.4.365
 Title & Authors
Related Fixed Point Theorem for Six Mappings on Three Fuzzy Metric Spaces
Sharma, Sushil; Tilwankar, Prashant;
  PDF(new window)
 Abstract
Related fixed point theorems on two or three metric spaces have been prove in different ways. However, so for the related fixed point theorem on fuzzy metric space have not been proved. Sharma, Deshpande and Thakur were the first who have establishe related fixed point theorem for four mappings on two complete fuzzy metric spaces. Their work was maiden in this line. In this paper we obtain a related fixed point theorem for six mappings on three complete fuzzy metric spaces. Of course this is a new result on this line.
 Keywords
Fuzzy metric spaces;Common fixed point;Cauchy sequence;
 Language
English
 Cited by
 References
1.
Y. J. Cho, Fixed points in fuzzy metric spaces, Journal of Fuzzy Mathematics, 5(4)(1997), 949-962.

2.
Y. J. Cho, S. M. Kang and S. S. Kim, Fixed points in two metric spaces, Novi Sad J. Math., 29(1)(1999), 47-53.

3.
Z. K. Deng, Fuzzy pseudo metric spaces, J. Math. Anal. Appl., 86(1982), 74-75. crossref(new window)

4.
M. A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl., 69(1979), 205-230. crossref(new window)

5.
B. Fisher, Fixed points on two metric spaces, Glasnik Mate, 16(36)(1981), 333-337.

6.
B. Fisher, Related fixed points on two metric spaces, Math. Seminar Notes, Kobe Univ., 10(1982), 17-26.

7.
B. Fisher and P. P. Murthy, Related fixed point theorems for two pairs of mappings on two metric spaces, Kyungpook Math. J., 37(1997), 343-347.

8.
A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64(1994), 395-399. crossref(new window)

9.
M. Grabiec, Fixed point in fuzzy metric space, Fuzzy Sets and Systems, 27(1988), 385-389. crossref(new window)

10.
R. K. Jain, H. K. Sahu and B. Fisher, Related fixed point theorems for three metric spaces, Novi Sad J. Math., 26(1)( 1996), 11-17.

11.
R. K. Jain, A. K. Shrivastava and B. Fisher, Fixed points on three complete metric spaces, Novi Sad J. Math., 27(1)(1997), 27-35.

12.
O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12(1984), 215-229. crossref(new window)

13.
O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11(1975), 336-344.

14.
S. N. Mishra, N. Sharma and S. L. Singh, Common fixed points of maps on fuzzy metric spaces, Internat. J. Math. Sci., 17(1994), 253-258. crossref(new window)

15.
N. P. Nung, A fixed point theorem in three metric spaces, Math. Seminar Notes, Kobe Univ., 11(1983), 77-79.

16.
V. Popa, Fixed points on two complete metric spaces, Review of Research, Faculty of Sci. Math. Series Univ. of Novi Sad, 21(1)(1991), 83-93.

17.
B. Schweizer and A. Sklar, Statistical spaces, Pacific J. Math., 10(1960), 313-334. crossref(new window)

18.
Sushil Sharma, Bhavna Deshpande and Deepti Thakur, Related fixed point theorem for four mappings on two fuzzy metric spaces, Internet. J. Pure and Applied Mathematics, 41(2)(2007), 241-250.

19.
L. A. Zadeh, Fuzzy Sets, Information and control, 8(1965), 338-353. crossref(new window)