JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Baer and Quasi-Baer Modules over Some Classes of Rings
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 51, Issue 4,  2011, pp.375-384
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2011.51.4.375
 Title & Authors
Baer and Quasi-Baer Modules over Some Classes of Rings
Haily, Abdelfattah; Rahnaou, Hamid;
  PDF(new window)
 Abstract
We study Baer and quasi-Baer modules over some classes of rings. We also introduce a new class of modules called AI-modules, in which the kernel of every nonzero endomorphism is contained in a proper direct summand. The main results obtained here are: (1) A module is Baer iff it is an AI-module and has SSIP. (2) For a perfect ring R, the direct sum of Baer modules is Baer iff R is primary decomposable. (3) Every injective R-module is quasi-Baer iff R is a QI-ring.
 Keywords
Endomorphism;Idempotent;Annihilator;Baer module;-nonsingular module;
 Language
English
 Cited by
1.
On weak Rickart modules, Journal of Algebra and Its Applications, 2016, 1750165  crossref(new windwow)
2.
Direct sums of quasi-Baer modules, Journal of Algebra, 2016, 456, 76  crossref(new windwow)
 References
1.
M. Alkan and A. Harmanci, On Summand Sum and Summand Intersection Property of Modules, Turk. J. Math., 26(2002), 131-147.

2.
F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second edition, GTM 13, Springer-Verlag, New-York, 1992.

3.
S. K. Berberian, Baer *-Rings, Springer-Verlag, Berlin, Heidelberg, New York, 1972.

4.
W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J., 34(1967), 417-424. crossref(new window)

5.
C. Faith, Algebra II, Ring theory, Springer-Verlag, 1981.

6.
A. Haily and M. Alaoui, Perfect Rings for which the converse of Schur's lemma holds, Publ. Mat., 45(2001), 219-222. crossref(new window)

7.
A. Haily, H. Rahnaoui, Some external characterizations of SV-rings and hereditary rings, Int. J. Math. Math. Sci., 2007, Art. ID 84840, 6 pp crossref(new window)

8.
I. Kaplansky, Rings of operators, New York, Benjamin, 1968.

9.
S. T. Rizvi, C. S. Roman, Baer and quasi-Baer modules, Comm. Algebra, 32(2004), 103-123. crossref(new window)

10.
S. T. Rizvi, C. S. Roman, On K-nonsingular modules and applications, Comm. Algebra, 35(2007), 2960-2982 crossref(new window)

11.
S. T. Rizvi, C. S. Roman, On direct sums of Baer modules, J. Algebra 321(2009), 682-696. crossref(new window)

12.
T. Y. Lam Lectures on modules and rings, Graduate Texts in Mathematics, 189. Springer-Verlag, New York, 1999.

13.
G. V. Wilson. Modules with the summand intersection property, Comm. Alg., 14(1)(1986). 21-38 crossref(new window)

14.
R. Wisbauer, Foundations of module and ring theory, Gordon and Beach Science Publishers, 1991.