Advanced SearchSearch Tips
Baer and Quasi-Baer Modules over Some Classes of Rings
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 51, Issue 4,  2011, pp.375-384
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2011.51.4.375
 Title & Authors
Baer and Quasi-Baer Modules over Some Classes of Rings
Haily, Abdelfattah; Rahnaou, Hamid;
  PDF(new window)
We study Baer and quasi-Baer modules over some classes of rings. We also introduce a new class of modules called AI-modules, in which the kernel of every nonzero endomorphism is contained in a proper direct summand. The main results obtained here are: (1) A module is Baer iff it is an AI-module and has SSIP. (2) For a perfect ring R, the direct sum of Baer modules is Baer iff R is primary decomposable. (3) Every injective R-module is quasi-Baer iff R is a QI-ring.
Endomorphism;Idempotent;Annihilator;Baer module;-nonsingular module;
 Cited by
On weak Rickart modules, Journal of Algebra and Its Applications, 2017, 16, 09, 1750165  crossref(new windwow)
Direct sums of quasi-Baer modules, Journal of Algebra, 2016, 456, 76  crossref(new windwow)
M. Alkan and A. Harmanci, On Summand Sum and Summand Intersection Property of Modules, Turk. J. Math., 26(2002), 131-147.

F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second edition, GTM 13, Springer-Verlag, New-York, 1992.

S. K. Berberian, Baer *-Rings, Springer-Verlag, Berlin, Heidelberg, New York, 1972.

W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J., 34(1967), 417-424. crossref(new window)

C. Faith, Algebra II, Ring theory, Springer-Verlag, 1981.

A. Haily and M. Alaoui, Perfect Rings for which the converse of Schur's lemma holds, Publ. Mat., 45(2001), 219-222. crossref(new window)

A. Haily, H. Rahnaoui, Some external characterizations of SV-rings and hereditary rings, Int. J. Math. Math. Sci., 2007, Art. ID 84840, 6 pp crossref(new window)

I. Kaplansky, Rings of operators, New York, Benjamin, 1968.

S. T. Rizvi, C. S. Roman, Baer and quasi-Baer modules, Comm. Algebra, 32(2004), 103-123. crossref(new window)

S. T. Rizvi, C. S. Roman, On K-nonsingular modules and applications, Comm. Algebra, 35(2007), 2960-2982 crossref(new window)

S. T. Rizvi, C. S. Roman, On direct sums of Baer modules, J. Algebra 321(2009), 682-696. crossref(new window)

T. Y. Lam Lectures on modules and rings, Graduate Texts in Mathematics, 189. Springer-Verlag, New York, 1999.

G. V. Wilson. Modules with the summand intersection property, Comm. Alg., 14(1)(1986). 21-38 crossref(new window)

R. Wisbauer, Foundations of module and ring theory, Gordon and Beach Science Publishers, 1991.