JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Chebyshev Collocation Method for Stiff Initial Value Problems and Its Stability
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 51, Issue 4,  2011, pp.435-456
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2011.51.4.435
 Title & Authors
A Chebyshev Collocation Method for Stiff Initial Value Problems and Its Stability
Kim, Sang-Dong; Kwon, Jong-Kyum; Piao, Xiangfan; Kim, Phil-Su;
  PDF(new window)
 Abstract
The Chebyshev collocation method in [21] to solve stiff initial-value problems is generalized by using arbitrary degrees of interpolation polynomials and arbitrary collocation points. The convergence of this generalized Chebyshev collocation method is shown to be independent of the chosen collocation points. It is observed how the stability region does depend on collocation points. In particular, A-stability is shown by taking the mid points of nodes as collocation points.
 Keywords
Chebyshev Collocation method;BDF-type methods;Stiff initialvalue problem;Absolute stability;
 Language
English
 Cited by
1.
Simple ECEM Algorithms Using Function Values Only,;;;

Kyungpook mathematical journal, 2013. vol.53. 4, pp.573-591 crossref(new window)
1.
An error embedded method based on generalized Chebyshev polynomials, Journal of Computational Physics, 2016, 306, 55  crossref(new windwow)
2.
Simple ECEM Algorithms Using Function Values Only, Kyungpook mathematical journal, 2013, 53, 4, 573  crossref(new windwow)
3.
A technique for the numerical solution of initial-value problems based on a class of Birkhoff-type interpolation method, Journal of Computational and Applied Mathematics, 2013, 244, 125  crossref(new windwow)
 References
1.
R. R. Ahmad, N. Yaacob, A. H. Mohd Murid, Explicit methods in solving stiff ordinary differential equations, Int. J. Comput. Math., 81(2004), 1407-1415. crossref(new window)

2.
J. Alverez, J. Rojo, An improved class of generalized Runge-Kutta methods for stiff problems. Part I: The scalar case, Appl. Math. Comput., 130(2002), 537-560. crossref(new window)

3.
J. Alverez, J. Rojo, An improved class of generalized Runge-Kutta methods for stiff problems. Part II: the separated system case, Appl. Math. Comput., 159(2004), 717-758. crossref(new window)

4.
K. E. Atkinson, An Introduction to Numerical Analysis, 2nd ed., John Wiley & Sons, NewYork, 1989.

5.
P. N. Brown, G. D. Byrne, A. C. Hindmarsh, VODE: A variable coefficient ODE solver, SIAM J. Sci. Statist. Comput., 10(1989), 1038-1051. crossref(new window)

6.
J. C. Butcher, Implicit Runge-Kutta processes, Math. Comput., 18(1964), 50-64. crossref(new window)

7.
J. C. Butcher, Integration processes based on Radau quadrature formulas, Math. Comput., 18(1964), 233-244. crossref(new window)

8.
J. C. Butcher, G.Wanner, Runge-Kutta methods: some historical notes, Appl. Numer. Math., 22(1996), 113-151. crossref(new window)

9.
J. R. Cash, On the integration of stiff systems of ODE's using extended backward differential formulae, Numer. Math., 34(1980), 235-246. crossref(new window)

10.
J. R. Cash, S. Considine, An MEBDF code for stiff initial value problems, ACM Trans. Math. Software, 18(2)(1992), 142-155. crossref(new window)

11.
C. F. Curtiss, J. O. Hirschfelder, Integration of stiff equations, Proc. Natl. Acad. Sci., 38(1952), 235-243. crossref(new window)

12.
G. Dahlquist, A special stability problem for linear multistep methods, BIT, 3(1963), 27-43. crossref(new window)

13.
C. Fredebeul, A-BDF: a generalization of the backward differentiation formulae, SIAM J. Numer. Anal., 35(5)(1998), 1917-1938. crossref(new window)

14.
N. Guzel, M. Bayram, On the numerical solution of stiff system, Appl. Math. Comput., 170(2005), 230-236. crossref(new window)

15.
A. Hadi Alim and A. Khader Error control policy for initial value problems with discontinuities and delays, Kyungpook Math. J., 48(2008), 665-684. crossref(new window)

16.
E. Hairer, S. P. Norsett, G. Wanner, Solving ordinary differential equations I, Nonstiff problems, Springer Series in Computational Mathematics, Springer 1996.

17.
E. Hairer, G.Wanner, Solving ordinary differential equations. II. Stiff and differential-algebraic problems, Springer Series in Computational Mathematics, Springer 1996.

18.
E. Hairer, G.Wanner, Stiff differential equations solved by Radau methods, J. Comput. Appl. Math., 111(1999), 93-111. crossref(new window)

19.
A. C. Hindmarsh, ODEPACK, A systematized collection of ODE solvers, in: R.S. Stepleman et al., eds, Scientific Computing, North-Holland, Amsterdam, (1983), 55-64.

20.
L. G. Ixaru, G. V. Berghe, H. D. Meyer, Exponentially fitted variable two-step BDF algorithm for rst order ODEs, Comput. Phys. Comm., 150(2003), 116-128. crossref(new window)

21.
H. Ramos, J. Vigo-Aguiar, A fourth-order Runge-Kutta method based on BDF-type Chebyshev approximations, J. Comput. Appl. Math., 204(2007), 124-136. crossref(new window)

22.
H. Ramos, J. Vigo-Aguiar, An almost L-stable BDF-type method for the numerical solution of stiff ODEs arising from the method of lines, Numer. Methods Partial Differential equations, 23(2007), 1110-1121. crossref(new window)

23.
H. Ramos, A non-standard explicit integration scheme for initial value problems, Appl. Math. Comput., 189(2007), 710-718. crossref(new window)

24.
J. Vigo-Aguiar, H. Ramos, A family of A-stable Runge-Kutta collocation methods of higher order for initial-value problems, IMA J. Numer. Anal., 27(2007), 798-817. crossref(new window)

25.
J. Vigo-Aguiar, J. Martn-Vaquero, H. Ramos, Exponential tting BDF-Runge-Kutta algorithms, Comput. Phys. Comm., 178(2008), 15-34. crossref(new window)

26.
H. Ramos, R. Carcia-Rubio, Analysis of a Chebyshev-based backward differentiation formulae and realtion with Runge-Kutta collocation methods, Inter. J. Comp. Math., to appear.

27.
M. M. Stabrowski, An efficient algorithm for solving stiff ordinary differential equations, Simul. Pract. Theory, 5(1997), 333-344. crossref(new window)

28.
X. Y. Wu, J. L. Xia, Two low accuracy methods for stiff systems, Appl. Math. Comput., 123(2001), 141-153. crossref(new window)