Advanced SearchSearch Tips
On N(κ)-Contact Metric Manifolds Satisfying Certain Curvature Conditions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 51, Issue 4,  2011, pp.457-468
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2011.51.4.457
 Title & Authors
On N(κ)-Contact Metric Manifolds Satisfying Certain Curvature Conditions
De, Avik; Jun, Jae-Bok;
  PDF(new window)
We consider pseudo-symmetric and Ricci generalized pseudo-symmetric N() contact metric manifolds. We also consider N()-contact metric manifolds satisfying the condition = 0 where R and S denote the curvature tensor and the Ricci tensor respectively. Finally we give some examples.
N()-contact metric manifold;Sasakian manifold;pseudo-symmetric manifold;Ricci generalized pseudo-symmetric manifold;
 Cited by
K. Arslan, R. Deszcz, R. Ezentas and M. Hotlos, On A certain class of conformally at manifolds, Bull. Inst. Math.Acad. Sinica, 26(1998), 183-199.

K. Arslan, R. Deszcz and R. Ezentas, On a certain class of hypersurfaces in semi-Euclidean spaces, Soochow J. Math., 25(1999), 223-236.

N. Hashimoto and M. Sekizawa, Three dimensional conformally at pseudo-symmetric spaces of constant type, Arch. Math.(Brno), 36(2000), 279-286.

C. Baikoussis and T. Koufogiorgos, On a type of contact manifolds, J. Geom., 46(1-2)(1993), 1-9. crossref(new window)

M. Belkhelfa, R. Deszcz and L. Verstraelen, Symmetry Properties of Sasakian Space Forms, Soochow J. of Math., 31(4)(2005), 611-616.

D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203. Birkhauser Boston, Inc., Boston, MA, USA, 2002.

D. E. Blair, J. S. Kim and M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc., 42(5)(2005), 883-892. crossref(new window)

D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91(1-3)(1995), 189-214. crossref(new window)

E. Boeckx, A full classification of contact metric ($\kappa,\mu$)-spaces, Illinois J. of Math., 44(2000), 212-219.

M.C.Chaki and M. Tarafdar, On a type of Sasakian manifold, Soochow J. Math., 16(1)(1990), 23-28.

R. Deszcz, On pseudosymmetric spaces, Bull. Belgian Math. Soc., Ser. A, 44(1992), 1-34.

J. Milnor, Curvature of left invariant metrics on Lie groups, Advances in Mathematics, 21(1976), 293-311. crossref(new window)

D. Perrone, Contact Riemannian manifolds satisfying $R(X,\xi){\cdot}R$ = 0, Yokohama Math. J., 39(2)(1992), 141-149.

Z. I. Szabo, Structure theorems on Riemannian spaces satisfying $R(X,Y){\cdot}R$ = 0, The local version, J. Diff. Geom., 17(1982), 531-582.

S. Tanno, Isometric immersions of Sasakian manifolds in spheres, Kodai Math. J., 21(1969), 448-458. crossref(new window)

K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, 3. World Scientific Publishing Co., Singapore, 1984.