JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Four-dimensional Naturally Reductive Pseudo-Riemannian Homogeneous Spaces
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 52, Issue 1,  2012, pp.1-11
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2012.52.1.1
 Title & Authors
Four-dimensional Naturally Reductive Pseudo-Riemannian Homogeneous Spaces
De Leo, Barbara;
  PDF(new window)
 Abstract
Our attention is turned to four-dimensional pseudo-Riemannian naturally reductive homogeneous spaces. In particular, our study leads to a complete classification of them.
 Keywords
Pseudo-Riemannian metrics;homogeneous manifolds;naturally reductive spaces;
 Language
English
 Cited by
1.
Four-dimensional naturally reductive pseudo-Riemannian spaces, Differential Geometry and its Applications, 2015, 41, 48  crossref(new windwow)
 References
1.
W. Ambrose and I. M. Singer, On homogeneous Riemannian manifolds, Duke Math. J., 25(1958), 647-669. crossref(new window)

2.
G. Calvaruso and R. A. Marinosci, Homogeneous geodesics of non-unimodular Lorentzian Lie groups and naturally reductive Lorentzian spaces in dimension three, Adv. Geom. 8(2008), 473-489. crossref(new window)

3.
L. A Cordero and P. E. Parker, Left-invariant Lorentzian metrics on 3-dimensional Lie groups, Rend. Mat. Appl., 17(7)(1997), 129-155.

4.
J. E. D'Atri, Geodesic spheres and symmetries in naturally reductive homogeneous spaces, Michigan Math. J., 22(1975), 71-76. crossref(new window)

5.
J. E. D'Atri and W. Ziller, Naturally reductive metrics and Einstein metrics on compact Lie groups, Mem. Amer. Math. Soc. 18, 215, 1979.

6.
B. De Leo and R. A. Marinosci, Special Homogeneous structures on pseudo- Riemannian manifolds, JP Journal of Geometry and Topology, 8(3)(2008), 203 - 228.

7.
P. M. Gadea and J. A. Oubina, Homogeneous pseudo-Riemannian structures and homogeneous almost para-Hermitian structures, Houston J. Math., 18(3)(1992), 449- 465.

8.
P. M. Gadea and J. A. Oubina, Reductive homogeneous pseudo-Riemannian manifolds, Mh. Math., 124(1997), 17-34. crossref(new window)

9.
N. Haouari, W. Batat, N. Rahmani and S. Rahmani, Three-dimensional naturally reductive homogeneous Lorentzian manifolds, Mediterranean J. Math., 5(2008), 113- 131. crossref(new window)

10.
S. Kobayashi and K. Nomizu, Foundations of differential geometry, II, Intersciences Publ., New York, 1969.

11.
O. Kowalski, Spaces with volume-preserving symmetries and related classes of Riemannian manifolds, Rend. Semin. Mat. Univ. Politec. Torino, Fascicolo Speciale, (1983), 131-158.

12.
O. Kowalski, Generalized symmetric spaces, Lectures Notes in Math., Springer- Verlag, Berlin, Heidelberg, New York, 1980.

13.
O. Kowalski and L. Vanhecke, Four-dimensional naturally reductive homogeneous spaces, Rend. Sem. Mat. Torino, Fasc. Speciale, (1985), 223-232.

14.
J. Milnor, Curvature of left invariant metrics on Lie groups, Adv. Math., 21(1976), 293-329. crossref(new window)

15.
K. Nomizu, Invariant affine connection on homogeneous spaces, Amer. J. Math., 76(1954), 33-65. crossref(new window)

16.
B. O'Neill, Semi-Riemannian Geometry, New York Academic Press, 1983.

17.
F. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian manifolds, London Math. Soc. Lect. Notes 83, Cambridge Univ. Press, 1983.

18.
F. Tricerri and L. Vanhecke, Geodesic spheres and naturally reductive homogeneous spaces, Riv. Mat. Univ. Parma, 1985.

19.
H. Wu, On the de Rham decomposition theorem, Illinois J. Math., 8(1964), 291-311.

20.
H. Wu, Decomposition of Riemannian manifolds, Bull. Amer. Math. Soc., 70(1964), 610-617. crossref(new window)

21.
H. Wu, Holonomy groups of indefinite metrics, Pacific J. Math., 20(1967), 351-392. crossref(new window)