JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On Certain Class of Multivalent Functions Involving the Cho-Kwon-Srivastava Operator
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 52, Issue 1,  2012, pp.21-32
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2012.52.1.21
 Title & Authors
On Certain Class of Multivalent Functions Involving the Cho-Kwon-Srivastava Operator
Shenan, Jamal Mohammad;
  PDF(new window)
 Abstract
In this paper a new subclass of multivalent functions with negative coefficients defined by Cho-Kwon-Srivastava operator is introduced. Coefficient estimate and inclusion relationships involving the neighborhoods of p-valently analytic functions are investigated for this class. Further subordination result and results on partial sums for this class are also found.
 Keywords
Analytic function;p-valent functions;neighborhood of analytic functions;subordination;
 Language
English
 Cited by
 References
1.
O. Altinatas, S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Appl. Math. Letters, 13(3)(2000), 63-67.

2.
M. K. Aouf, Neighborhoods of certain analytic functions with negative coefficients, Comput, Math. Appl., 47(2004), 1667-1673. crossref(new window)

3.
N. E. Cho, O. S. Koen, and H. M. Srivastava, Inclusion relationships and argument properties for certain subclass of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292(2004), 470-483. crossref(new window)

4.
A. W. Goodman, Univalent functions and non-analytic curves, Proc. Amer. Math. Soc., 8(1957), 598-601. crossref(new window)

5.
S. Owa. On the distortion Theorems, Kyungpook Math. J., 18(1978), 53-59.

6.
B. A. Patel and N. K. Thakare, On convex and extreme points of p-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. R. S. Roumanie(N. S.), 27(75)(1983), 145-160.

7.
R. K. Raina, H. M. Srivastava, Inclusion and neighborhood properties of some analytic and multivalent functions, J. Inequal. Pure. Appl. Math., 7(1)(2006), Art. 5, 1-6.

8.
Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81(1981), 521-527. crossref(new window)

9.
H. Saitoh, A Linear operator and applications of the first order differential subordinations, Math. Japan., 44(1996), 31-38.

10.
H. S. Wilf, Subordinating factor sequence for convex maps of the unit circle, Proc. Amer. Math. Soc., 12(1961), 689-693. crossref(new window)