JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On 2-Absorbing and Weakly 2-Absorbing Ideals of Commutative Semirings
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 52, Issue 1,  2012, pp.91-97
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2012.52.1.91
 Title & Authors
On 2-Absorbing and Weakly 2-Absorbing Ideals of Commutative Semirings
Darani, Ahmad Yousefian;
  PDF(new window)
 Abstract
Let be a commutative semiring. We define a proper ideal of to be 2-absorbing (resp., weakly 2-absorbing) if (resp., ) implies or or . We show that a weakly 2-absorbing ideal with is 2-absorbing. We give a number of results concerning 2-absorbing and weakly 2-absorbing ideals and examples of weakly 2-absorbing ideals. Finally we de ne the concept of 0 - (1-, 2-, 3-)2-absorbing ideals of and study the relationship among these classes of ideals of .
 Keywords
Semiring;2-absorbing ideal;Weakly 2-absorbing ideal;
 Language
English
 Cited by
1.
On (m,n)-closed ideals of commutative rings, Journal of Algebra and Its Applications, 2016, 1750013  crossref(new windwow)
2.
On 2-Absorbing Quasi-Primary Ideals in Commutative Rings, Communications in Mathematics and Statistics, 2016, 4, 1, 55  crossref(new windwow)
3.
On 2-Absorbing and Weakly 2-Absorbing Primary Ideals of a Commutative Semiring, Kyungpook mathematical journal, 2016, 56, 1, 107  crossref(new windwow)
 References
1.
P. J. Allen, Ideal theory in semirings, Disseration, Texas Christian University, 1967.

2.
P. J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc., 21(1969), 412-416. crossref(new window)

3.
P. J. Allen and L. Dale, Ideal theory in the semiring $Z_{+}$, Publ. Math. Debrecen, 22(1975), 219-224.

4.
P. J. Allen and J. Neggers, Ideal theory in commutative semirings, Kyungpook Math. J., 46(2006), 261-271.

5.
A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75(2007), 417-429. crossref(new window)

6.
A. Badawi and A. Yousefian Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math., To appear.

7.
I. Dolinka, Minimal varieties of semirings with involution, Algebra Univ., 44(2000), 143-151. crossref(new window)

8.
S. Ebrahimi Atani, The ideal theory in quotients of commutative semirings, Glasnik Mathematicki, 42(62)(2007), 301-308. crossref(new window)

9.
S. Ebrahimi Atani, On k-weakly primary ideals over semirings, Sarajevo J. Math., 3(15)(2007), 9-13,

10.
R. Ebrahimi Atani and S. Ebrahimi Atani, Ideal theory in commutative semirings, Bul. Acad. Stinte Repub. Mold. Mat., 2(57)(2008), 14-23,

11.
S. Ghosh, A note on regularity in matrix semirings, Proc. Japan Acad., 44(2004), 1-4.

12.
J. S. Golan, Semirings and Their Applications, Kluwer Academic Publishers, Dordrecht 1999.

13.
V. Gupta and J. N. Chaudhari, Some remarks on semirings, Radovi Matematicki, 12(2003), 13-18.

14.
V. Gupta and J. N. Chaudhari, Right $\pi$-regular semirings, Sarajevo J. Math., 14(2)(2006), 3-9.

15.
V. Gupta and J. N. Chaudari, Characterization of weakly prime subtractive ideals in semirings, Bull. Inst. Math. Acad. Sin. (N.S.), 3(2)(2008), 347-352.

16.
J. A. Huckaba, Commutative rings with zero divisors, New York: Dekker, 1988.

17.
S. LaGrassa, Semirings: Ideals and polynomials, Dissertation, University of Iowa, Iowa city, IA, 1995.

18.
Pandarinathan Nandakumar, 0 - (1-; 2-)Prime ideals in semirings, Kyungpook Math. J., 50(2010), 117-122. crossref(new window)