JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On Completely ρ-Irresolute and Weakly ρ-Irresolute Functions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 52, Issue 1,  2012, pp.99-107
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2012.52.1.99
 Title & Authors
On Completely ρ-Irresolute and Weakly ρ-Irresolute Functions
Chitharanjan, Devamanoharan; Missier, Pious;
  PDF(new window)
 Abstract
The purpose of this paper is to introduce two new types of irresolute functions called, completely -irresolute functions and weakly -irresolute functions. We obtain their characterizations and their basic properties.
 Keywords
Topological spaces;-open sets;-irresolute functions;
 Language
English
 Cited by
 References
1.
N. Biswas, Characterizations of semi-continuous functions, Atti. Accad. Naz. Lince. Rend. Cl Sci. Fis. Mat. Natur., 48(1970), 399-402.

2.
S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fund. Math., 74(1972), 233-254.

3.
C. Devamanoharan, S. Pious Missier and S. Jafari, On $\rho$-closed sets in topological spaces, (submitted).

4.
C. Devamanoharan, S. Pious Missier and S. Jafari, On $\rho$-continuous functions in topological spaces, (submitted).

5.
C. Devamanoharan, S. Pious Missier and S. Jafari, On $\rho$-homeomorphisms in topo- logical spaces, (submitted).

6.
K. Dlaska, N. Ergun and M. Ganster, Countable S-closed spaces, Math. Slovaca, 44(1994), 337-348.

7.
E. Ekici, Completely p-irresolute functions, Analele Univ. de Vest din Timisoara, Seria Mat.-Inf., XLII, (2)(2004), 17-25.

8.
E. Ekici and T. Noiri, On ${\gamma}{\alpha}$-continuous functions, Demonstratio Mathematica, 4(2005), 943-951.

9.
E. Ekici, Generalization of perfectly continuous, Regular set-connected and clopen functions, Acta. Math. Hungar., 107(3)(2005), 193-206. crossref(new window)

10.
E. Ekici and S. Jafari, On a weaker form of complete irresoluteness, Bol. Soc. Paran. Mat., 26(1-2)(2008), 81-87.

11.
N. Ergun, On nearly paracompact spaces, Istanbul, Univ. Fen, Mec. Ser. A, 45(1980), 65-87.

12.
S. Jafari, T. Noiri, N. Rajesh and M. L. Thivagar, Another generalization of closed sets, Kochi J. Math., 3(2008), 25-38.

13.
N. Levine, Strong continuity in topological spaces, Amer. Math. Monthly, 67(1960), 269. crossref(new window)

14.
N. Levine, Semi-open sets, semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41. crossref(new window)

15.
P. E. Long and L. L. Herrington, Basic properties of regular-closed functions, Rend. Circ. Mat. Palermo, 27(1978), 20-28. crossref(new window)

16.
G. D. Maio, S-closed spaces, S-sets and S-continuous functions, Acad. Sci. Torino, 118(1984), 125-134.

17.
A. S. Mashour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. phys. Soc. Egypt., 53(1982), 47-53.

18.
M. Mrsevic, On pairwise $R_{\circ}$ and pairwise R1bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30(78)(1986), 141-148.

19.
T. Noiri and G. D. Maio, Properties of $\alpha$-compact spaces, Rend. Circ. Mat. Palermo., Ser(II), (1998), 359-369.

20.
M. K. Singal, A. R. Singal and A. Mathur, On nearly compact spaces, Boll. UMI, 4(1969), 702-710.

21.
M. H. Stone, Application of the theory Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-381. crossref(new window)

22.
T. Thompson, S-closed spaces, Proc. Amer. Math. Soc., 60(1976), 335-338.

23.
M. K. R. S. Veerakumar, $\hat{g}$-closed sets in topological spaces, Bull Allahabad. Soc., 18(2003), 99-112.

24.
M. K. R. S. Veerakumar, #g-semi-closed sets in topological spaces, Antarctica J. Maths, 2(2)(2005), 201-202.

25.
M. K. R. S. Veerakumar, Between $g^{\sim}$-closed and g-closed sets, Antarctica J. Maths, 3(1)(2006), 43-65.