JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Strongly Summable Double Sequence Spaces in n-Normed Spaces Defined by Ideal Convergence and an Orlicz Function
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 52, Issue 2,  2012, pp.137-147
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2012.52.2.137
 Title & Authors
Strongly Summable Double Sequence Spaces in n-Normed Spaces Defined by Ideal Convergence and an Orlicz Function
Esi, Ayhan;
  PDF(new window)
 Abstract
In this paper we introduce some new double sequence spaces via ideal convergence and an Orlicz function in -normed spaces and examine some properties of the resulting spaces.
 Keywords
P-convergent;n-normed space;Orlicz function;
 Language
English
 Cited by
 References
1.
M. Et, Y. Altin, B. Choudhary and B. C. Tripathy, On some classes of sequences defined by sequences of Orlicz functions, Mathematical Inequalities and Applications, 9(2)(2006), 335-342.

2.
S. Gahler, Linear 2-normietre Rume, Math.Nachr., 28(1965), 1-43.

3.
H. Gunawan, On n-inner product, n-norms and the Cauchy-Schwarz Inequality, Scientiae Mathematicae Japonicae Online, 5(2001), 47-54.

4.
H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. & Math. Sci., 27(10)(2001), 631-639. crossref(new window)

5.
P. Kostyrko, T. Salat and W. Wilczynski,I-convergence, Real Analysis Exchange, 26(2)(2000/2001), 669-686.

6.
M. A. Krasnoselski and Y. B. Rutickii, Convex function and Orlicz spaces, Groningen, Nederland, 1961.

7.
I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil. Soc., 64(1968), 285-290.

8.
A. Misiak, n-inner product spaces, Math. Nachr., 140(1989), 299-319. crossref(new window)

9.
H. Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49. crossref(new window)

10.
A. Pringsheim, Zur Theori der zweifach unendlichen Zahlenfolgen, Math. Ann. 53(1900), 289-321. crossref(new window)

11.
D. Rath and B. C. Tripathy, Matrix maps on sequence spaces associated with sets of integers, Indian Jour. Pure Appl. Math., 27(2)(1996), 197-206.

12.
W. H. Ruckle, FK-spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978. crossref(new window)

13.
T. Salat, B. C. Tripathy and M. Ziman, On I-convergence field, Italian J. Pure and Appl. Math., 17(2005), 45-54.

14.
S. Simons, The sequence space l ($p_v$)and m($p_v$), Proc. London Math. Soc., 15(3)(1965), 422-436. crossref(new window)

15.
B. C. Tripathy and B. Hazarika, I-convergent sequence spaces defined by Orlicz function, Acta Mathematica Applicatae Sinica, 27(1)(2001), 149-154.

16.
B. C. Tripathy and M. Sen, On generalized statistically convergent sequences, Indian Jour. Pure Appl. Math., 32(11)(2001), 1689-1694.

17.
B. C. Tripathy, On generalized difference paranormed statistically convergent sequences, Indian Jour. Pure Appl. Math., 35(5)(2004), 655-663.

18.
B. C. Tripathy and S. Mahanta, On a class of generalized lacunary difference sequence spaces defined by Orlicz function, Acta Mathematica Applicatae Sinica, (Eng.Ser.), 20(2)(2004), 231-238. crossref(new window)

19.
B. C. Tripathy and M. Sen, Characterization of some matrix classes involving paranormed sequence spaces, Tamkang Journal of Mathematics, 37(2)(2006), 155-162.

20.
B. C. Tripathy, Y. Altin and M. Et,Generalized difference sequence spaces on seminormed spaces defined by Orlicz functions, Mathematica Slovaca, 58(3)(2008), 315-324. crossref(new window)

21.
B. C. Tripathy and B. Hazarika, I-convergent sequence spaces associated with multiplier sequence spaces, Mathematical Inequalities and Applications, 11(3)(2008), 543-548.

22.
B. C. Tripathy and B. Sarma, Statistically convergent difference double sequence spaces, Acta Mathematica Sinica, 24(5)(2008), 737-742. crossref(new window)

23.
B. C. Tripathy and B. Hazarika, Paranormed I-convergent sequence spaces, Mathematica Slovaca, 59(4)(2009), 485-494. crossref(new window)

24.
B. C. Tripathy and B. Sarma, Vector valued double sequence spaces defined by Orlicz function, Mathematica Slovaca, 59(6)(2009), 767-776. crossref(new window)

25.
B. C. Tripathy and A. J. Dutta, Bounded variation double sequence space of fuzzy real numbers, Computers & Mathematics with Applications, 59(2)(2010), 1031-1037. crossref(new window)

26.
B. C. Tripathy and H. Dutta, On some new paranormed difference sequence spaces defined by Orlicz functions, Kyungpook Mathematical Journal, 50(2010), 59-69. crossref(new window)

27.
B. C. Tripathy and S. Mahanta, On I-acceleration convergence of sequences, Journal of the Franklin Institute, 347(2010), 591-598. crossref(new window)

28.
B. C. Tripathy and P. Chandra, On some generalized paranormed sequence spaces associated with multiplier sequences defined by modulus function, Analysis in Theory and Applications, 27(1)(2011), 21-27. crossref(new window)

29.
B. C. Tripathy and B. Hazarika, I-monotonic and I-convergent sequences, Kyungpook Mathematical Journal, 51(2)(2011), 233-239. crossref(new window)

30.
B. C. Tripathy and B. Sarma, Double sequence spaces of fuzzy numbers defined by Orlicz function, Acta Mathematica Sinica, 31B(1)(2011), 134-140.