Exponentially Fitted Error Correction Methods for Solving Initial Value Problems

• Journal title : Kyungpook mathematical journal
• Volume 52, Issue 2,  2012, pp.167-177
• Publisher : Department of Mathematics, Kyungpook National University
• DOI : 10.5666/KMJ.2012.52.2.167
Title & Authors
Exponentially Fitted Error Correction Methods for Solving Initial Value Problems
Kim, Sang-Dong; Kim, Phil-Su;

Abstract
In this article, we propose exponentially fitted error correction methods(EECM) which originate from the error correction methods recently developed by the authors (see [10, 11] for examples) for solving nonlinear stiff initial value problems. We reduce the computational cost of the error correction method by making a local approximation of exponential type. This exponential local approximation yields an EECM that is exponentially fitted, A-stable and L-stable, independent of the approximation scheme for the error correction. In particular, the classical explicit Runge-Kutta method for the error correction not only saves the computational cost that the error correction method requires but also gives the same convergence order as the error correction method does. Numerical evidence is provided to support the theoretical results.
Keywords
Exponentially fitted;Error correction;Stiff initial-value problem;RK methods;
Language
English
Cited by
References
1.
C. E. Abhulimen, G. E. Omeike, A sixth-order exponentially fitted shceme for the numerical solution of systems of ordinary differential equations, J. Appl. Math. & Bioinf., 1(2011), 175-186.

2.
R. R. Ahmad, N. Yaacob, A. H. Mohd Murid, Explicit methods in solving stiff ordinary differential equations, Int. J. Comput. Maht., 81(2004), 1407-1415.

3.
J. Alverez, J. Rojo, An improved class of generalized Runge-Kutta methods for stiff problems. Part I: The scalar case, Appl. Math. Comput., 130(2002), 537-560.

4.
L. Brugnano and C. Magherini, Blended implementation of block implicit methods for ODEs, Appl. Numer. Math., 42(2002), 29-45.

5.
J. R. Cash, On the exponential fitting of composite, multiderivative linear multistep methods, SIAM J. Numer. Anal., 18(1981), 808-821.

6.
M. V. Daele and G. V. Berghe, Extended one-step methods: an exponential fitting approach, Appl. Num. Anal. Comp. Math., 1(2004), 353-362.

7.
G. Dahlquist, A special stability problem for linear multistep methods, BIT, 3(1963), 27-43.

8.
L. W. Jackson and S. K. Kenue, A fourth order exponetially fitted method, SIAM J. Numer. Anal., 11(1974), 965-978.

9.
W. Liniger and R. A. Willoughby, Efficient integration methods for stiff systems of ordinary differential equations, SIAM J. Numer. Anal., 7(1970), 47-65.

10.
P. Kim, X. Piao and S. D. Kim, An error corrected Euler method for solving stiff problems based on Chebyshev collocation, SIAM J. Numer. Anal., 49(2011), 2211-2230.

11.
S. D. Kim, X. Piao and P. Kim, Convergence on Error correction methods for initial value problems, J. Comp. Appl. Math., to appear.

12.
H. Ramos, A non-standard explicit integration scheme for initial-value problems, Appl. Math. Comp., 189(1)(2007), 710-718.

13.
D. Voss, A fifth-order exponentially fitted formula, SIAM J. Numer. Anal., 25(1988), 670-678.

14.
X. Y. Wu, A sixth-order A-stable explicit one-step method for stiff systems, Comput. Math. Appl., 35(1998), 59-64.