JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A New Approach to the Lebesgue-Radon-Nikodym Theorem. with respect to Weighted p-adic Invariant Integral on ℤp
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 52, Issue 3,  2012, pp.299-306
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2012.52.3.299
 Title & Authors
A New Approach to the Lebesgue-Radon-Nikodym Theorem. with respect to Weighted p-adic Invariant Integral on ℤp
Rim, Seog-Hoon; Jeong, Joo-Hee;
  PDF(new window)
 Abstract
We will give a new proof of the Lebesgue-Radon-Nikodym theorem with respect to weighted p-adic q-measure on , using Mahler expansion of continuous functions, studied by the authors in 2012. In the special case, q = 1, we can derive the same result as in Kim, 2012, Kim et al, 2011.
 Keywords
p-adic invariant integral;
 Language
English
 Cited by
 References
1.
A. Bayad and T. Kim, Identities involving values of Bernstein, q-Bernoulli, and q- Euler polynomials. Russ. J. Math. Phys., 18(2)(2011), 133-143. crossref(new window)

2.
J. Choi, T. Kim and Y. H. Kim, A note on the q-analogues of Euler numbers and polynomials, to appear in Honam Math.

3.
T. Kim, q-Volkenborn integration. Russ. J. Math. Phys., 9(3)(2002), 288-299.

4.
T. Kim, Lebesgue-Radon-Nikodym theorem with respect to fermionic p-adic invariant measure on $Z_{p}$, Russ. J. Math. Phys., 19(2)(2012), 193-196 crossref(new window)

5.
T. Kim, Lebesgue-Radon-Nikodym theorem with respect to fermionic q-Volkenborn distribution on ${\mu}_{q}$, Appl. Math. Comp., 187(2007), 266-271. crossref(new window)

6.
T. Kim, A note on q-Bernstein polynomials. Russ. J. Math. Phys., 18(1)(2011), 73-82 crossref(new window)

7.
T. Kim, Note on the Euler numbers and polynomials, Adv. Stud. Contemp. Math., 17(2008), 131-156.

8.
T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on $Z_{p}$, Russ. J. Math. Phys., 16(2009), 484-491. crossref(new window)

9.
T. Kim, New approach to q-Euler polynimials of higher order, Russ. J. Math. Phys., 17(2010), 218-225. crossref(new window)

10.
T. Kim, J. Choi and H. Kim A note on the weighted Lebesgue-Radon-Nikodym theorem with respect to p-adic invariant integral on $Z_{p}$, to appear in JAMI.

11.
T. Kim, D. V. Dolgy, S. H. Lee and C. S. Ryoo, Analogue of Lebesgue-Radon-Nikodym theorem with respect to p-adic q-measure on $Z_{p}$, Abstract and Applied Analysis, 2011(2011), Article ID637634, 6 pages.

12.
T. Kim, S. D. Kim and D. W. Park,, On Uniformly differntiabitity and q-Mahler expansion, Adv. Stud. Contemp. Math., 4(2001), 35-41.

13.
J. Jeong and S.-H. Rim, A Note on the Lebesgue-Radon-Nikidym Theorem with respect to Weighted p-adic Invariant Integral on $Z_{p}$, Abstract and Applied Analysis, 2012(2012), Article ID 696720, 8pages