Advanced SearchSearch Tips
A New Time Stepping Method for Solving One Dimensional Burgers' Equations
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 52, Issue 3,  2012, pp.327-346
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2012.52.3.327
 Title & Authors
A New Time Stepping Method for Solving One Dimensional Burgers' Equations
Piao, Xiang Fan; Kim, Sang-Dong; Kim, Phil-Su; Kim, Do-Hyung;
  PDF(new window)
In this paper, we present a simple explicit type numerical method for discretizations in time for solving one dimensional Burgers' equations. The proposed method does not need an iteration process that may be required in most implicit methods and have good convergence and efficiency in computational sense compared to other known numerical methods. For evidences, several numerical demonstrations are also provided.
Error corrected Euler method;Pseudo-Spectral method;
 Cited by
A. H. A. Ali, G. A. Gardner, L. R. T. Gardner, A collocation solution for Burgers' equation using cubic B-spline finite elements, Comput. Methods Appl. Mech. Engrg., 100(1992), 325-337. crossref(new window)

A. R. Bahadir, A fully implicit finite-difference scheme for two-dimensional Burgers' equations, Appl. Math. Comput., 137(2003), 131-137. crossref(new window)

M. Berzins, Global error estimation in the methods of lines for parabolic equations, SIAM J. Sci. Statist. Comput., 19(4)(1988), 687-701.

K. Black, A spectral element technique with a local spectral basis, SIAM J. Sci. Comput., 18(1997), 355-370. crossref(new window)

D. T. Blackstock, Convergence of the Keck-Boyer perturbation solution for plane waves of finite amplitude in vicous fluid, J. Acoust. Soc. Am., 39(1966), 411-413. crossref(new window)

N. Bressan, A. Quarteroni, An implicit/explicit spectral method for Burgers' equation, Calcolo, 23(1987), 265-284.

J. M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1(1948), 171-199. crossref(new window)

J. Caldwell, P. Wanless and A. E. Cook, A finite element approach to Burgers' equation, Appl. Math. Modelling, 5(1981), 189-193. crossref(new window)

C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, Berlin Heidelberg, 2006.

H. Chen, Z. Jiang, A characteristics mixed finite element method for Burgers' equation, J. Appl. Math. Comput., 15(2004), 29-51. crossref(new window)

I. Christie, A. R. Mitchell, Upwinding of high order Galerkin methods in conductionconvection problems, Int. J. Numer. Methods Eng., 12(1978), 1764-1771. crossref(new window)

M. Ciment, S. H. Leventhal and B. C. Weinberg, The operator compact implicit method for parabolic equations, J. Comput. Phys., 28(1978), 135-166. crossref(new window)

J. D. Cole, On a quasi-linear parabolic equation occuring in aerodynamics, Quart. Appl. Math., IX, (1951), 225-236.

G. Dahlquist, A special stability problem for linear multistep methods, BIT, 3(1963), 27-43. crossref(new window)

M. O. Deville, P. F. Fischer and E. H. Mund, High-order methods for incompressible fluid flow, Cambridge University Press, New York, 2002.

I. A. Hassanien, A. A. Salama and H. A. Hosham Fourth-order finite difference method for solving Burgers' equation, Applied Math. and Comput., 170(2005), 781-800. crossref(new window)

B. M. Herbst, S. W. Schoombie, D. F. Griffiths and A. R. Mitchell, Generalized Petrov-Galerkin methods for the numerical solution of Burgers' equation, Int. J. Numer. Methods Eng., 20(1984), 1273-1289. crossref(new window)

R. S. Hirsh, Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique, J. Comput. Phys., 19(1975), 90-105. crossref(new window)

A. N. Hrymak, G. J. Mcrae and A. W. Westerberg, An implementation of a moving finite element method, J. Comput. Phys., 63(1986), 168-190. crossref(new window)

P. Z. Hunag, A. Abduwali, The modified local Crank-Nicolson method for one- and two-dimensional Burgers' equations, Compu. Math. Appl., 59(2010), 2452-2463. crossref(new window)

A. H. Khater, R. S. Temsah and M. M. Hassan, A Chebyshev spectral collocation method for solving Burgers'-type equations, J. Comput. Appl. Math., 222(2008), 333- 350. crossref(new window)

P. Kim, X. Piao and S. Kim, An error corrected Euler method for solving stiff problems based on Chebyshev collocation, SIAM J. Numer. Anal., 49(2011), 2211-2230. crossref(new window)

S. Kutluay, A. R. Bahadir and A. Ozdes, Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods, J. Comput. and Applied Math., 103(1999), 251-261. crossref(new window)

S. Kutluay, A. Esen and I. Dag, Numerical solutions of the Burgers' equation by the least-squares quadratic B-spline finite element method, J. Comput. Appl. Math., 167(2004), 21-33. crossref(new window)

M. J. Lighthill, 'Viscosity Effects in Sound Waves of Finite Amplitude', In: Surveys in Mechanics, ed. by G.K. Bauchelor, R. Davies, Combridge Univ. Press, 1956.

R. C. Mittal, R. Jiwari, Differential Quadrature Method for Two-Dimensional Burgers' equations, Int. J. Comput. Methods Eng. Sci. Mech., 10(2009), 450-459. crossref(new window)

A. R. Mitchell, D. F. Griffiths, The finite difference method in partial differential equations, John Wiley & Sons, New York, 1980.

T. Ozis, E. N. Aksan and A. Ozdes, A finite element approach for solution of Burgers' equation, Applied Math. and Comput., 139(2003), 417-428. crossref(new window)

H. Ramos, J. Vigo-Aguiar, A fourth-order Runge-Kutta method based on BDF-type Chebyshev approximations, J. Comput. Appl. Math., 204(2007), 124-136. crossref(new window)

L. N. Trefethen, Spectral Methods in MATLAB, Software Environ. Tools 10, SIAM, Philadelphia, 2000.

Y. Wu, X. H. Wu, Linearized and rational approximation method for solving nonlinear Burgers' equation, Int. J. Numer. Methods Fluids, 45(2004), 509-525. crossref(new window)

M. Xu, R. H. Wang, J. H. Zhang and Q. Fang, A novel numerical scheme for solving Burgers' equation, Applied Math. and Comput., 217(2011), 4473-4482. crossref(new window)

L. Zhang, J. Ouyang, X. Wang and X. Zhang, Varational multiscale element-free Galerkin method for 2D Burgers' equation, J. Comput. Phys., 229(2010), 7147-7161. crossref(new window)