Advanced SearchSearch Tips
Block LU Factorization for the Coupled Stokes Equations by Spectral Element Discretization
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 52, Issue 4,  2012, pp.359-373
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2012.52.4.359
 Title & Authors
Block LU Factorization for the Coupled Stokes Equations by Spectral Element Discretization
Piao, Xiangfan; Kim, Philsu; Kim, Sang Dong;
  PDF(new window)
The block LU factorization is used to solve the coupled Stokes equations arisen from an optimal control problem subject to Stokes equations. The convergence of the spectral element solution is proved. Some numerical evidences are provided for the model coupled Stokes equations. Moreover, as an application, this algorithm is performed for an optimal control problem.
LU factorization;coupled stokes equations;optimal control;spectral element method;
 Cited by
J. Blair Perot, An analysis of the fractional step method, J. Comput. Phys., 108(1993), 51-58. crossref(new window)

P. Bochev, Least-squares methods for optimal control, Nonlinear Anal., 30(1997), 1875-1885. crossref(new window)

P. Bochev and M. Gunzburger, Least-squares finite element methods for optimization and control problems for the Stokes equations, Comput. Math. Appl., 48(2004), 1035- 1057. crossref(new window)

P. Bochev and M. Gunzburger, Least-squares finite element methods for optimality systems arising in optimization and control problems, SIAM J. Numer. Anal., 43(2006), 2517-2543. crossref(new window)

F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Ser. Comput. Math. 15, Springer-Verlag, New York, (1991).

C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Method- s:Fundamentals in Single Domains, Springer-Verlag, Berlin Heidelberg, (2006).

C. Canuto, M. Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods:Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer-Verlag, Berlin Heidelberg, (2007).

Y. Chen, N. Yi and W. Liu, A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46(2008), 2254-2275. crossref(new window)

W. Couzy, Spectral Element Discretization of the Unsteady Navier-Stokes Equations and Its Iterative Solution on Parallel Computers, These No. 1380 Ecole Polytechnique Federale de Lausanne, (1995).

P. Dartzi and L. Harvard, A new approximate LU factorization scheme for the Reynolds-averaged Navier-Stokes equations, AIAA J., 26(1988), 163-171. crossref(new window)

M. O. Deville, P. F. Fischer and E. H. Mund, High-Order Methods for Incompressible Fluid Flow, Cambridge Monographs on Applied and Computational Mathematics, Cambridge Univ. Press. Cambridge, UK, (2002).

P. F. Fischer, An overlapping Schwarz method for spectral element solution of the incompressible Navier-Stokes equations, J. Comp. Phys., 133(1997), 84-101. crossref(new window)

R. Ghanem and H. Sissaoui, A posteriori error estimate by a spectral method of an elliptic optimal control problem, J. Comput. Math. Optim., 2(2006), 111-135.

V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, New York, (1986).

M. Gunzburger, Perspectives in Flow Control and Optimization, SIAM, Philadelphia, (2003).

V. Hutson and J. S. Pym, Applications of Functional Analysis and Opertor Theory, Academic Press Inc. New York, (1980).

S. D. Kim, Uzawa algorithms for coupled Stokes equations from the optimal control problem, Calcolo., 46(2009), 37-47. crossref(new window)

S. D. Kim, S. Ryu and H. Lee, First-Order System Least-Squares Methods for an Optimal Control Problem by the Stokes Flow, SIAM J. Numer. Anal., 47(2009), 1524- 1545. crossref(new window)

Y. Maday, A. T. Patera, and E. M. Ronquist, An operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow, J. Sci. Comput., 5(1990), 263-292.

Y. Maday, A. T. Patera, and E. M. Ronquist, The $P_{N}-P_{N_2}$ method for the ap-proximation of the Stokes problem, Tech. Rep. 92009, Rept. of Mech. Engr., MIT., (1992).

A. Rosch and B. Vexler, Optimal control of the stokes equations: A priori error analysis for finite element discretization with postprocessing, SIAM J. Numer. Anal., 44(2006), 1903-1920. crossref(new window)

O. Shigeru and K. Kunio, An approximate LU factorization method for the compressible Navier-Stokes equations, J. Comput. Phys., 63(1986), 157-167. crossref(new window)