JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Existence of an Alternating Sign on a Spanning Tree of Graphs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 52, Issue 4,  2012, pp.513-519
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2012.52.4.513
 Title & Authors
The Existence of an Alternating Sign on a Spanning Tree of Graphs
Kim, Dongseok; Kwon, Young Soo; Lee, Jaeun;
  PDF(new window)
 Abstract
For a spanning tree T of a connected graph and for a labelling : E(T) {+,-}, is called an alternating sign on a spanning tree T of a graph if for any cotree edge , the unique path in T joining both end vertices of e has alternating signs. In the present article, we prove that any graph has a spanning tree T and an alternating sign on T.
 Keywords
bipartite graphs;induced graphs;spanning trees;alternating signs;Seifert surfaces;
 Language
English
 Cited by
1.
THE BOUNDARIES OF DIPOLE GRAPHS AND THE COMPLETE BIPARTITE GRAPHS K2,n,;

호남수학학술지, 2014. vol.36. 2, pp.399-415 crossref(new window)
1.
THE BOUNDARIES OF DIPOLE GRAPHS AND THE COMPLETE BIPARTITE GRAPHS K2,n, Honam Mathematical Journal, 2014, 36, 2, 399  crossref(new windwow)
 References
1.
S. Baader, Bipartite graphs and combinatorial adjacency, preprint, arXiv:1111.3747.

2.
R. Furihata, M. Hirasawa and T. Kobayashi, Seifert surfaces in open books, and a new coding algorithm for links, Bull. London Math. Soc., 40(3)(2008), 405-414. crossref(new window)

3.
J. Gross and T. Tucker, Topological graph theory,Wiley-Interscience Series in discrete Mathematics and Optimization, Wiley & Sons, New York, 1987.

4.
C. Hayashi and M. Wada, Constructing links by plumbing flat annuli, J. Knot Theory Ramifications, 2(1993), 427-429. crossref(new window)

5.
D. Kim, Basket, flat plumbing and flat plumbing basket surfaces derived from induced graphs, preprint, arXiv:1108.1455.

6.
D. Kim, Y. S. Kwon and J. Lee, String surfaces, string indices and genera of links, preprint, arXiv:1105.0059.

7.
L. Rudolph, Hopf plumbing, arborescent Seifert surfaces, baskets, espaliers, and homogeneous braids, Topology Appl., 116(2001), 255-277. crossref(new window)

8.
H. Seifert, Uber das Geschlecht von Knoten, Math. Ann., 110(1934), 571-592.

9.
J. Stallings, Constructions of fibred knots and links, in: Algebraic and Geometric Topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, CA, 1976), Part 2, Amer. Math. Soc., Providence, RI, 1978, 55-60.

10.
T. Van Zandt. PSTricks: PostScript macros for generic $T_{E}X$. Available at ftp://ftp.princeton.edu/pub/tvz/.