JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Subordination and Superordination for Multivalent Functions associated with the Differintegral Operator
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 53, Issue 1,  2013, pp.1-12
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2013.53.1.1
 Title & Authors
Subordination and Superordination for Multivalent Functions associated with the Differintegral Operator
Kwon, Oh Sang; Cho, Nak Eun;
  PDF(new window)
 Abstract
The purpose of the present paper is to obtain some subordination- and superordination-preserving properties for multivalent function associated the differintegral operators defined on the space of normalized analytic functions in the open unit disk. The sandwich type theorem for the integral operator is also considered.
 Keywords
subordination;superordination;univalent function;convex function;differintegral operator;
 Language
English
 Cited by
 References
1.
T. Bulboaca, Integral operators that preserve the subordination, Bull. Korean Math. Soc., 32(1997), 627-636.

2.
T. Bulboaca, A class of superordination-preserving integral operators, Indag. Math. N. S., 13(2002), 301-311. crossref(new window)

3.
W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 2(1952), 169-185.

4.
S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28(1981), 157-171. crossref(new window)

5.
S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Different. Equations, 56(1985), 297-309. crossref(new window)

6.
S. S. Miller and P. T. Mocanu, Differential subordination, Theory and Application, Marcel Dekker, Inc., New York, Basel, 2000.

7.
S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl., 48(2003), 815-826. crossref(new window)

8.
S. S. Miller, P. T. Mocanu and M. O. Reade, Subordination-preserving integral operators, Trans. Amer. Math. Soc., 283(1984), 605-615. crossref(new window)

9.
S. Owa, On the distortion theorems I, Kyungpook Math. J., 18(1978), 53-59.

10.
S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39(1987), 1057-1077. crossref(new window)

11.
S. Owa and H. M. Srivastava, Some subordination theorems involving a certain family of integral operators, Integral Transforms Spec. Funct., 15(2004), 445-454. crossref(new window)

12.
Ch. Pommerenke, Univalent Functions, Vanderhoeck and Ruprecht, Gottingen, 1975.

13.
H. M. Srivastava and M. K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. I and II , J. Math. anal. Appl., 171(1992), 1-13

14.
H. M. Srivastava and M. K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. I and II , J. Math. anal. Appl., 192(1995), 673-688. crossref(new window)

15.
H. M. Srivastava and A. K. Mishra, A fractional differintegral operator and its applications to a nested class of multivalent functions with negative coefficients, Adv. Stud. Contemp. Math., 7(2003), 203-214.