JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Polynomial Numerical Index of Lp(μ)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 53, Issue 1,  2013, pp.117-124
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2013.53.1.117
 Title & Authors
The Polynomial Numerical Index of Lp(μ)
Kim, Sung Guen;
  PDF(new window)
 Abstract
We show that for 1 < < , , , $n^{(k)}(l_p)
 Keywords
Homogeneous polynomials;polynomial numerical index;
 Language
English
 Cited by
1.
Generalized Numerical Index and Denseness of Numerical Peak Holomorphic Functions on a Banach Space, Abstract and Applied Analysis, 2013, 2013, 1  crossref(new windwow)
 References
1.
F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971.

2.
F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge Univ. Press, 1973.

3.
Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc., 54 (1996), 135-147. crossref(new window)

4.
Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, The polynomial numerical index of a Banach space, Proc. Edinburgh Math. Soc., 49 (2006), 39-52.

5.
Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, Composition, numerical range and Aron-Berner extension, Math. Scand., 103 (2008), 97-110.

6.
S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London, 1999.

7.
J. Duncan, C. M. McGregor, J. D. Pryce and A. J. White, The numerical index of a normed space, J. London Math. Soc., 2 (1970), 481-488.

8.
S. G. Kim, Norm and numerical radius of 2-homogeneous polynomials on the real space $\int_{p}^{2}$ , (1 < p < $\infty$), Kyungpook Math. J., 48 (2008), 387-393. crossref(new window)

9.
S. G. Kim, Three kinds of numerical indices of a Banach space, Math. Proc. Royal Irish Acad., 112A (2012), 21-35.

10.
S. G. Kim, M. Martin and J. Meri, On the polynomial numerical index of the real spaces $c_0$, $\ell_1$, ${\ell}_{\infty}$, J. Math. Anal. Appl., 337 (2008), 98-106. crossref(new window)

11.
H. J. Lee, Banach spaces with polynomial numerical index 1, Bull. Lond. Math. Soc., 40 (2008), 193-198. crossref(new window)

12.
G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc., 100 (1961), 29-43. crossref(new window)