JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Representation Theory of the Lie Group T3 and Three Index Bessel Functions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 53, Issue 1,  2013, pp.143-148
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2013.53.1.143
 Title & Authors
Representation Theory of the Lie Group T3 and Three Index Bessel Functions
Pathan, Mahmood Ahmad; Shahwan, Mohannad Jamal Said;
  PDF(new window)
 Abstract
The theory of generalized Bessel functions is reformulated within the framework of an operational formalism using the multiplier representation of the Lie group as suggested by Miller. This point of view provides more efficient tools which allow the derivation of generating functions of generalized Bessel functions. A few special cases of interest are also discussed.
 Keywords
Generalized Bessel functions;local Lie group;generating functions;
 Language
English
 Cited by
 References
1.
L. C. Andrew, Special functions for engineers and applied mathematicians, MacMillan, New York, 1985.

2.
L. S. Brown and T. W. Kibble, Interaction intense laser beams with electrons, Phy.Rev., 133A(1964), 705-719.

3.
G. Dattoli, L. Giannessi, L Mezi and A. Torre, Theory of Generalized Bessel functions, II Nuovo Cimento, 105B(3)(1990), 327-348.

4.
G. Dattoli, M. Migliorati and H. M. Srivastava, Bessel summation formulae and operational methods, J. Comput. Appl. Math, 173(2005), 149-154. crossref(new window)

5.
G. Dattoli, P. E. Ricci and I. Khomasuridze, On the derivation of new fmilies of generating functions involving ordinary Bessel functions and Bessel-Hermite functions, Mathematical and computer Modelling, 46(2007), 410-414. crossref(new window)

6.
G. Dattoli, P. E. Ricci and P. Pacciani, Comments on the theory of Bessel functions with more than one index, Applied Mathematics and Computation, 150(2004), 603-610. crossref(new window)

7.
G. Dattoli, H. M. Srivastava and K. Zhukovsky, Operational methods and differential equations with applications to initial-value problems, Applied Mathematics and Computation, 184(2007), 979-1001. crossref(new window)

8.
G. Dattoli and A. Torre, Theory and applications of generalized Bessel functions, Arance (1996), Rome.

9.
G. Dattoli and G. K. Voykov, Spectral properties of two harmonic undulator radiation, Phy. Rev. E, 48(1993), 3030-3039.

10.
A. Erdelyi et al, Higher Transcendental functions, Vol.II, Mac Graw Hill, New York, Toronto, London, 1953.

11.
W. Miller. JR., Lie theory and special functions, Academic press, New York and London, 1968.

12.
M. A. Pathan, A. N. Goyal and M. J. S. Shahwan, Lie theoretic generating functions of multivariable generalized Bessel functions, Reports on Math. Phy, 39(1997), 249-254. crossref(new window)

13.
M. A. Pathan and M. J. S. Shahwan, Lie theory and generalized Bessel functions, Bull Math. Soc. Math. Roumanie, 40(1-4)(1997), 88-93.

14.
L. S. Pontrjagin, Topological groups, Princeton Univ. Press Princeton, New Jersey, 1958.

15.
H. R. Reiss, Absorption of light by light, J. Math. Phy., 3(1962), 59-67. crossref(new window)