JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Multiple Unbounded Positive Solutions for the Boundary Value Problems of the Singular Fractional Differential Equations
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 53, Issue 2,  2013, pp.257-271
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2013.53.2.257
 Title & Authors
Multiple Unbounded Positive Solutions for the Boundary Value Problems of the Singular Fractional Differential Equations
Liu, Yuji; Shi, Haiping; Liu, Xingyuan;
  PDF(new window)
 Abstract
In this article, we establish the existence of at least three unbounded positive solutions to a boundary-value problem of the nonlinear singular fractional differential equation. Our analysis relies on the well known fixed point theorems in the cones.
 Keywords
Positive solution;fractional differential equation;fixed-point theorem;
 Language
English
 Cited by
 References
1.
R. P. Agarwal, M. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl Math, 109(2011), 973-1033.

2.
A. Arara, M. Benchohra, N. Hamidi and J. J. Nieto, Fractional order differential equations on an unbounded domain, Nonlinear Analysis TMA, 72(2010), 580-586, crossref(new window)

3.
Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Analysis, 72(2010), 916-924. crossref(new window)

4.
R. Dehghant and K. Ghanbari, Triple positive solutions for boundary value problem of a nonlinear fractional differential equation, Bulletin of the Iranian Mathematical Society, 33(2007), 1-14.

5.
A. A. Kilbas and J. J. Trujillo, Differential equations of fractional order: methods, results and problems-I, Applicable Analysis, 78(2001), 153-192. crossref(new window)

6.
R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana University Mathematics Journal, 28(1979), 673-688. crossref(new window)

7.
Y. Liu, Positive solutions for singular FDES, U.P.B. Sci. Series A, 73(2011), 89-100.

8.
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equation, Wiley, New York, 1993.

9.
S. Z. Rida, H. M. El-Sherbiny and A. A. M. Arafa, On the solution of the fractional nonlinear Schrodinger equation, Physics Letters A, 372(2008), 553-558. crossref(new window)

10.
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integral and Derivative. Theory and Applications, Gordon and Breach, 1993.

11.
X. Xu, D. Jiang and C. Yuan, Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear Analysis TMA, 71(2009), 4676-4688. crossref(new window)

12.
F. Zhang, Existence results of positive solutions to boundary value problem for fractional differential equation, Positiviyt, 13(2008), 583-599.

13.
S. Q. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 252(2000), 804-812. crossref(new window)