JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On φ-pseudo Symmetries of (LCS)n-Manifolds
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 53, Issue 2,  2013, pp.285-294
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2013.53.2.285
 Title & Authors
On φ-pseudo Symmetries of (LCS)n-Manifolds
Hui, Shyamal Kumar;
  PDF(new window)
 Abstract
The present paper deals with a study of -pseudo symmetric and -pseudo Ricci symmetric -manifolds. It is shown that every -pseudo symmetric -manifold and -pseudo Ricci symmetric -manifold are -Einstein manifold.
 Keywords
pseudo symmetric;pseudo Ricci symmetric;-pseudo symmetric;-pseudo Ricci symmetric;-Einstein;-manifold;
 Language
English
 Cited by
1.
SECOND ORDER PARALLEL TENSORS AND RICCI SOLITONS ON (LCS)n-MANIFOLDS,;;;

대한수학회논문집, 2015. vol.30. 2, pp.123-130 crossref(new window)
1.
SECOND ORDER PARALLEL TENSORS AND RICCI SOLITONS ON (LCS)n-MANIFOLDS, Communications of the Korean Mathematical Society, 2015, 30, 2, 123  crossref(new windwow)
 References
1.
K. Arslan, R. Ezentas, C. Murathan and C. Ozgur, On pseudo Ricci symmetric man-ifolds, Balkan J. Geom. Appl., 6(2001), 1-5.

2.
M. Atceken, On geometry of submanifolds of $(LCS)_{n}$-manifolds, Int. J. Math. Math. Sci., Hindawi Publ. Corp., 2012, Article ID 304647.

3.
E. Cartan, Sur une classe remarquable d'espaces de Riemannian, Bull. Soc. Math. France, 54(1926), 214-264.

4.
M. C. Chaki, On pseudo symmetric manifolds, An. Sti. Ale Univ., "AL. I. CUZA" Din Iasi, 33(1987), 53-58.

5.
M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulgarian J. Physics, 15(1988), 526-531.

6.
M. C. Chaki and B. Chaki, On pseudo symmetric manifolds admitting a type of semi-symmetric connection, Soochow J. Math., 13(1)(1987), 1-7. crossref(new window)

7.
M. C. Chaki and U. C. De, On pseudo symmetric spaces, Acta Math. Hungarica, 54(1989), 185-190. crossref(new window)

8.
M. C. Chaki and S. K. Saha, On pseudo projective Ricci symmetric manifolds, Bulgarian J. Physics, 21(1994), 1-7.

9.
U. C. De, On semi-decomposable pseudo symmetric Riemannian spaces, Indian Acad. Math., Indore, 12(2)(1990), 149-152.

10.
De, U. C. and Biswas, H. A., On pseudo conformally symmetric manifolds, Bull. Cal. Math. Soc., 85(1993), 479-486.

11.
U. C. De and N. Guha, On pseudo symmetric manifold admitting a type of semi-symmetric connection, Bulletin Mathematique, 4(1992), 255-258.

12.
De, U. C. and Mazumder, B. K., On pseudo Ricci symmetric spaces, Tensor N. S., 60(1998), 135-138.

13.
U. C. De, C. Murathan and C. Ozgur, Pseudo symmetric and pseudo Ricci symmetric warped product manifolds, Commun. Korean Math. Soc., 25(2010), 615-621. crossref(new window)

14.
R. Deszcz, On pseudo symmetric spaces, Bull. Soc. Math. Belg. Ser. A, 44(1)(1992), 1-34.

15.
R. Deszcz, On Ricci-pseudo symmetric warped products, Demonstratio Math., 22(1989), 1053-1065.

16.
S. K. Hui and M. Atceken, Contact warped product semi-slant submanifolds of $(LCS)_{n}$-manifolds, Acta Univ. Sapientiae Math., 3(2)(2011), 212-224.

17.
K. Matsumoto, On Lorentzian almost paracontact manifolds, Bull. Yamagata Univ. Nat. Sci., 12(1989), 151-156.

18.
I. Mihai and R. Rosca, On Lorentzian para-Sasakian manifolds, Classical Analysis, World Scientific Publ., Singapore, (1992), 155-169.

19.
B. O'Neill, Semi Riemannian Geometry with applications to relativity, Academic Press, New York, 1983.

20.
F. Ozen, On pseudo M-projective Ricci symmetric manifolds, Int. J. Pure Appl. Math., 72(2011), 249-258.

21.
F. Ozen and S. Altay, On weakly and pseudo symmetric Riemannian spaces, Indian J. Pure Appl. Math., 33(10)(2001), 1477-1488.

22.
F. Ozen and S. Altay, On weakly and pseudo concircular symmetric structures on a Riemannian manifold, Acta Univ. Palacki. Olomuc. Fac. rer. nat. Math., 47(2008), 129-138.

23.
E. M. Patterson, Some theorems on Ricci-recurrent spaces, J. London Math. Soc., 27(1952), 287-295.

24.
A. A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J., 43(2003), 305-314.

25.
A. A. Shaikh, Some results on $(LCS)_{n}$-manifolds, J. Korean Math. Soc., 46(2009), 449-461. crossref(new window)

26.
A. A. Shaikh and K. K. Baishya, On concircular structure spacetimes, J. Math. Stat., 1(2005), 129-132. crossref(new window)

27.
A. A. Shaikh and K. K. Baishya, On concircular structure spacetimes II, American J. Appl. Sci., 3(4)(2006), 1790-1794. crossref(new window)

28.
A. A. Shaikh and K. K. Baishya, On $\phi$-symmetric LP-Sasakian manifolds, Yokohama Math. J., 52(2006), 97-112.

29.
A. A. Shaikh, T. Basu and S. Eyasmin, On locally $\phi$-symmetric $(LCS)_{n}$-manifolds, Int. J. Pure Appl. Math., 41(2007), 1161-1170.

30.
A. A. Shaikh, T. Basu and S. Eyasmin, On the existence of $\phi$-recurrent $(LCS)_{n}$-manifolds, Extracta Mathematicae, 23(1)(2008), 71-83.

31.
A. A. Shaikh and T. Q. Binh, On weakly symmetric $(LCS)_{n}$-manifolds, J. Adv. Math. Studies, 2(2009), 75-90.

32.
A. A. Shaikh and S. K. Hui, On generalized $\phi$-recurrent $(LCS)_{n}$-manifolds, AIP Conference Proceedings, 1309(2010), 419-429.

33.
G. T. Sreenivasa, Venkatesha and C. S. Bagewadi, Some results on $(LCS)_{2n+1}-$ manifolds, Bull. Math. Analysis and Appl., 1(3)(2009), 64-70.

34.
Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y ).R = 0, The local version, J. Diff. Geom., 17(1982), 531-582.

35.
T. Takahashi, Sasakian $\phi$-symmetric spaces, Tohoku Math. J., 29(1977), 91-113. crossref(new window)

36.
M. Tarafder, On pseudo symmetric and pseudo Ricci symmetric Sasakian manifolds, Periodica Math. Hungarica, 22(1991), 125-129. crossref(new window)

37.
M. Tarafder, On conformally at pseudo symmetric manifolds, An. Sti. Ale Univ., "AL. I. CUZA" Din Iasi, 41(1995), 237-242.

38.
M. Tarafder and U. C. De, On pseudo symmetric and pseudo Ricci symmetric K-contact manifolds, Periodica Math. Hungarica, 31(1995), 21-25. crossref(new window)

39.
A. G. Walker, On Ruses spaces of recurrent curvature, Proc. London Math. Soc., 52(1950), 36-64.