JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Unit Ball of
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 53, Issue 2,  2013, pp.295-306
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2013.53.2.295
 Title & Authors
The Unit Ball of
Kim, Sung Guen;
  PDF(new window)
 Abstract
First we present the explicit formula for the norm of a symmetric bilinear form on the 2-dimensional real predual of the Lorentz sequence space . Using this formula, we classify the extreme points of the unit ball of .
 Keywords
extreme symmetric bilinear forms;the 2-dimensional real predual of the Lorentz sequence space;
 Language
English
 Cited by
1.
Extreme Bilinear Forms of $\mathcal{L}(^2d_*(1,w)^2)$,;

Kyungpook mathematical journal, 2013. vol.53. 4, pp.625-638 crossref(new window)
2.
Exposed Symmetric Bilinear Forms of 𝓛s(2d*(1, ω)2),;

Kyungpook mathematical journal, 2014. vol.54. 3, pp.341-347 crossref(new window)
3.
POLARIZATION AND UNCONDITIONAL CONSTANTS OF 𝓟(2d*(1,ω)2),;

대한수학회논문집, 2014. vol.29. 3, pp.421-428 crossref(new window)
4.
Exposed Bilinear Forms of 𝓛(2d*(1, w)2),;

Kyungpook mathematical journal, 2015. vol.55. 1, pp.119-126 crossref(new window)
1.
Extreme Bilinear Forms of $\mathcal{L}(^2d_*(1,w)^2)$, Kyungpook mathematical journal, 2013, 53, 4, 625  crossref(new windwow)
2.
Exposed 2-Homogeneous Polynomials on the two-Dimensional Real Predual of Lorentz Sequence Space, Mediterranean Journal of Mathematics, 2016, 13, 5, 2827  crossref(new windwow)
3.
Exposed Bilinear Forms of 𝓛(2d*(1, w)2), Kyungpook mathematical journal, 2015, 55, 1, 119  crossref(new windwow)
4.
Exposed Symmetric Bilinear Forms of 𝓛s(2d*(1, ω)2), Kyungpook mathematical journal, 2014, 54, 3, 341  crossref(new windwow)
5.
POLARIZATION AND UNCONDITIONAL CONSTANTS OF 𝓟(2d*(1,ω)2), Communications of the Korean Mathematical Society, 2014, 29, 3, 421  crossref(new windwow)
 References
1.
R. M. Aron, Y. S. Choi, S. G. Kim and M. Maestre, Local properties of poly-nomials on a Banach space, Illinois J. Math., 45(2001), 25-39.

2.
Y. S. Choi, H. Ki and S. G. Kim, Extreme polynomials and multilinear forms on $l_{1}$, J. Math. Anal. Appl., 228(1998), 467-482. crossref(new window)

3.
Y. S. Choi and S. G. Kim, The unit ball of $p(^{2}l_{2}^{2})$, Arch. Math., (Basel), 71(1998), 472-480. crossref(new window)

4.
Y. S. Choi and S. G. Kim, Extreme polynomials on $c_{0}$, Indian J. Pure Appl. Math., 29(1998), 983-989.

5.
Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space $p(^{2}l_{1})$, Results Math., 36(1999), 26-33. crossref(new window)

6.
Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces $p(^{2}l_{p}^{2})$ (p = 1, 2,${\infty}$), Indian J. Pure Appl. Math., 35(2004), 37-41.

7.
S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London (1999).

8.
S. Dineen, Extreme integral polynomials on a complex Banach space, Math. Scand., 92(2003), 129-140.

9.
B. C. Grecu, Geometry of 2-homogeneous polynomials on $l_{p}$ spaces, 1 < p < ${\infty}$, J. Math. Anal. Appl., 273(2002), 262-282 . crossref(new window)

10.
B. C. Grecu, G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Unconditional constants and polynomial inequalities, J. Approx. Theory, 161(2009), 706-722. crossref(new window)

11.
S. G. Kim, Exposed 2-homogeneous polynomials on $p(^{2}l_{p}^{2})$ (1 $\leq$ p $\leq$ ${\infty}$), Math. Proc. Royal Irish Acad., 107A(2007), 123-129.

12.
S. G. Kim, The unit ball of $L_{s}(^{2}l^{2}_{\infty})$, Extracta Math., 24(2009), 17-29.

13.
S. G. Kim, The unit ball of $P(^{2}d_{\ast}(1,w)^{2})$, Math. Proc. Royal Irish Acad., 111A(2011), 79-94.

14.
S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc., 131(2003), 449-453. crossref(new window)

15.
J. Lee and K. S. Rim, Properties of symmetric matrices, J. Math. Anal. Appl., 305(2005), 219-226. crossref(new window)

16.
G. A. Munoz-Fernandez, S. Revesz and J. B. Seoane-Sepulveda, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand., 105(2009), 147-160.

17.
G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl., 340(2008), 1069-1087. crossref(new window)

18.
R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl., 221(1998), 698-711. crossref(new window)