JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Unit Ball of
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 53, Issue 2,  2013, pp.295-306
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2013.53.2.295
 Title & Authors
The Unit Ball of
Kim, Sung Guen;
  PDF(new window)
 Abstract
First we present the explicit formula for the norm of a symmetric bilinear form on the 2-dimensional real predual of the Lorentz sequence space . Using this formula, we classify the extreme points of the unit ball of .
 Keywords
extreme symmetric bilinear forms;the 2-dimensional real predual of the Lorentz sequence space;
 Language
English
 Cited by
1.
Extreme Bilinear Forms of $\mathcal{L}(^2d_*(1,w)^2)$,;

Kyungpook mathematical journal, 2013. vol.53. 4, pp.625-638 crossref(new window)
2.
Exposed Symmetric Bilinear Forms of 𝓛s(2d*(1, ω)2),;

Kyungpook mathematical journal, 2014. vol.54. 3, pp.341-347 crossref(new window)
3.
POLARIZATION AND UNCONDITIONAL CONSTANTS OF 𝓟(2d*(1,ω)2),;

대한수학회논문집, 2014. vol.29. 3, pp.421-428 crossref(new window)
4.
Exposed Bilinear Forms of 𝓛(2d*(1, w)2),;

Kyungpook mathematical journal, 2015. vol.55. 1, pp.119-126 crossref(new window)
1.
Extreme Bilinear Forms of $\mathcal{L}(^2d_*(1,w)^2)$, Kyungpook mathematical journal, 2013, 53, 4, 625  crossref(new windwow)
2.
Exposed Bilinear Forms of 𝓛(2d*(1, w)2), Kyungpook mathematical journal, 2015, 55, 1, 119  crossref(new windwow)
3.
Exposed Symmetric Bilinear Forms of 𝓛s(2d*(1, ω)2), Kyungpook mathematical journal, 2014, 54, 3, 341  crossref(new windwow)
4.
POLARIZATION AND UNCONDITIONAL CONSTANTS OF 𝓟(2d*(1,ω)2), Communications of the Korean Mathematical Society, 2014, 29, 3, 421  crossref(new windwow)
5.
Exposed 2-Homogeneous Polynomials on the two-Dimensional Real Predual of Lorentz Sequence Space, Mediterranean Journal of Mathematics, 2016, 13, 5, 2827  crossref(new windwow)
 References
1.
R. M. Aron, Y. S. Choi, S. G. Kim and M. Maestre, Local properties of poly-nomials on a Banach space, Illinois J. Math., 45(2001), 25-39.

2.
Y. S. Choi, H. Ki and S. G. Kim, Extreme polynomials and multilinear forms on $l_{1}$, J. Math. Anal. Appl., 228(1998), 467-482. crossref(new window)

3.
Y. S. Choi and S. G. Kim, The unit ball of $p(^{2}l_{2}^{2})$, Arch. Math., (Basel), 71(1998), 472-480. crossref(new window)

4.
Y. S. Choi and S. G. Kim, Extreme polynomials on $c_{0}$, Indian J. Pure Appl. Math., 29(1998), 983-989.

5.
Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space $p(^{2}l_{1})$, Results Math., 36(1999), 26-33. crossref(new window)

6.
Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces $p(^{2}l_{p}^{2})$ (p = 1, 2,${\infty}$), Indian J. Pure Appl. Math., 35(2004), 37-41.

7.
S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London (1999).

8.
S. Dineen, Extreme integral polynomials on a complex Banach space, Math. Scand., 92(2003), 129-140.

9.
B. C. Grecu, Geometry of 2-homogeneous polynomials on $l_{p}$ spaces, 1 < p < ${\infty}$, J. Math. Anal. Appl., 273(2002), 262-282 . crossref(new window)

10.
B. C. Grecu, G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Unconditional constants and polynomial inequalities, J. Approx. Theory, 161(2009), 706-722. crossref(new window)

11.
S. G. Kim, Exposed 2-homogeneous polynomials on $p(^{2}l_{p}^{2})$ (1 $\leq$ p $\leq$ ${\infty}$), Math. Proc. Royal Irish Acad., 107A(2007), 123-129.

12.
S. G. Kim, The unit ball of $L_{s}(^{2}l^{2}_{\infty})$, Extracta Math., 24(2009), 17-29.

13.
S. G. Kim, The unit ball of $P(^{2}d_{\ast}(1,w)^{2})$, Math. Proc. Royal Irish Acad., 111A(2011), 79-94.

14.
S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc., 131(2003), 449-453. crossref(new window)

15.
J. Lee and K. S. Rim, Properties of symmetric matrices, J. Math. Anal. Appl., 305(2005), 219-226. crossref(new window)

16.
G. A. Munoz-Fernandez, S. Revesz and J. B. Seoane-Sepulveda, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand., 105(2009), 147-160.

17.
G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl., 340(2008), 1069-1087. crossref(new window)

18.
R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl., 221(1998), 698-711. crossref(new window)