JOURNAL BROWSE
Search
Advanced SearchSearch Tips
q-Analogue of Exponential Operators and Difference Equations
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 53, Issue 3,  2013, pp.349-369
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2013.53.3.349
 Title & Authors
q-Analogue of Exponential Operators and Difference Equations
Asif, Mohammad;
  PDF(new window)
 Abstract
The present paper envisages the -analogue of the exponential operators, determined by G. Dattoli and his collaborators for translation and diffusive operators which were utilized to establish analytical solutions of difference and integral equations. The generalization of their technique is expected to cover wide range of such utilization.
 Keywords
q-Calculus;q-Exponential operators;
 Language
English
 Cited by
 References
1.
J. Cigler, Operatormethoden fur q-Identitaten, Monatshefte fur Mathematik, 88(1979), 87-105. crossref(new window)

2.
G. Dattoli and D. Levi, it Exponential oprators and generalized difference equations, Nuovo Cimento B, 115(2000), 653-662.

3.
G. Dattoli, P. L.Ottaviani, A. Torre and L. Vazquez, Evolution operators equations: Integration with algebraic and finite difference methods, Applications to physical problems in classical and quantum field theory, Riv. Nuovo Cimento, 20(1997), 1-133.

4.
T. Ernest, The History of q-Calculus and a new method, Licentiate Thesis, Department of Mathematics, Uppsala University, SE-75106 Uppsala, Sweden. [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.63.274&rep=rep1&type=pdf].

5.
T. Ernest, q-Bernoulli and q-stirling numbers, an umbral approach, Department of Mathematics, Uppsala University, SE-75106 Uppsala, Sweden. [http://www.math.uu.se/research/pub/Ernst12.pdf].

6.
L. Faddeev, A. Yu. Volkov, Phys. Lett., B315(1993), 311.

7.
D. B. Fairlie, q-Analysis and Quantum Groups, in Proc. of Symmetries in Sciences V, Plenum Press, New York, 1991.

8.
G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990, 2004.

9.
F. H. Jackson, Q. J. Math. Oxford Ser. 2, (1951)1. crossref(new window)

10.
Ch. Jordan, Calculus of Finite Differences, Rotting and Romwalter, Sopron, Hungary, (1939).

11.
V. Kac and P. Cheung, Quantum calculus, Universitext, Springer-Verlag, New York, 2002.

12.
M. Asif and M. A. Khan, q-Analogue shift operators and pseudo-polynomials of fractional order, communicated for publication.

13.
M. Asif and M. A. Khan, q-Analogue of the operational methods, fractional operators and special polynomials, communicated for publication.

14.
M. Asif and M. A. Khan, Generalized q-shift operators and monomial type functions, communicated for publication.

15.
P. Nalli, Sopra un procedimento di calcolo analogo alla integrazione, (Italian) Palermom Rend., 47(1923), 337-374. crossref(new window)

16.
P. J. Olver, Applications of Lie Group to Differential Equations, Springer-Verlag, New York, 1986.

17.
M. P. Schutzenberger, Comptes Rendus des Seances de lAcademie des Sciences, 236(1953), 352-353.

18.
J. F. Steffensen, Interpolation, Chelsia, 1950.

19.
M. A. Ward, Calculus of sequences, Amer. J. Math., 58(1936), 255-266. crossref(new window)

20.
W. Witschel, On Baker-Campbell-Hausdorff operator disentangling by similarity transformations, Phys. Lett. A, 111(1985), 383-388. crossref(new window)