JOURNAL BROWSE
Search
Advanced SearchSearch Tips
t-Prüfer Modules
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 53, Issue 3,  2013, pp.407-417
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2013.53.3.407
 Title & Authors
t-Prüfer Modules
Kim, Myeong Og; Kim, Hwankoo; Oh, Dong Yeol;
  PDF(new window)
 Abstract
In this article, we characterize t-Prfer modules in the class of faithful multiplication modules. As a corollary, we also characterize Krull modules. Several properties of a -invertible submodule of a faithful multiplication module are given.
 Keywords
t-Prufer module;faithful multiplication module;Krull module;t-invertible submodule;
 Language
English
 Cited by
 References
1.
F. H. Al-Alwan and A. G. Naoum, Dedekind modules, Comm. Algebra, 24(1996), 397-421. crossref(new window)

2.
F. H. Al-Alwan and A. G. Naoum, Dense submodules of multiplication modules, Comm. Algebra, 24(1996), 413-424. crossref(new window)

3.
M. Ali, Invertiblity of multiplication modules, New Zealand J. Math., 35(2006), 17-29.

4.
M. Ali, Some remarks on generalized GCD domains, Comm. Algebra, 36(2008), 142-164. crossref(new window)

5.
M. Ali, Invertiblity of multiplication modules II, New Zealand J. Math., 39(2009), 45-64.

6.
M. Ali and D. J. Smith, Some remarks on multiplication and projective modules, Comm. Algebra, 32(2004), 3897-3909. crossref(new window)

7.
M. Alkan, B Sarac, and Y. Tiras, Dedekind modules, Comm. Algebra, 33(2005), 1617-1626. crossref(new window)

8.
M. Alkan and Y. Tiras, Prime modules and submodules, Comm. Algebra, 31(2003), 5253-5261. crossref(new window)

9.
M. Alkan and Y. Tiras, On Invertible and dense submodules, Comm. Algebra, 32(2004), 3911-3919. crossref(new window)

10.
Y. Al-Shaniafi and D. D Anderson, Multiplication modules and the ideal ${\theta}(M)$, Comm. Algebra, 30(2002), 3383-3390. crossref(new window)

11.
D. D. Anderson, On t-invertibility IV, Factorization in integral domains (Iowa City, IA, 1996), 221-225, Lecture Notes in Pure and Appl. Math., 189, Dekker, New York, 1997.

12.
Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16(1988), 755-739. crossref(new window)

13.
V. Erdogdu, Multiplication modules which are distributive, J. Pure Appl. Algebra, 54(1988), 209-213. crossref(new window)

14.
E. Houston and M. Zafrullah, Integral domains in which each t-ideal is divisorial, Mich. Math. J. 35(1988), 291-300. crossref(new window)

15.
B. G. Kang, On the converse of a well-known fact about Krull domains, J. Algebra, 124(1989), 284-299. crossref(new window)

16.
H. Kim and M. O. Kim , Krull modules, Algebra Colloq., 20(2013), 464-474.

17.
S. Malik, J. L. Mott, and M. Zafrullah, On t-invertibility, Comm. Algebra, 16(1988), 149-170. crossref(new window)

18.
J. L. Mott and M. Zafrullah, On Krull domains, Arch. Math., 56(1991), 559-568. crossref(new window)

19.
P. F. Smith, Some remarks on multiplication modules, Arch. Math., 50(1988), 223-235. crossref(new window)

20.
M. Zafrullah, Ascending chain condition and star operations, Comm. Algebra, 17(1989), 1523-1533. crossref(new window)