JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Weighted Carlson Mean of Positive Definite Matrices
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 53, Issue 3,  2013, pp.479-495
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2013.53.3.479
 Title & Authors
Weighted Carlson Mean of Positive Definite Matrices
Lee, Hosoo;
  PDF(new window)
 Abstract
Taking the weighted geometric mean [11] on the cone of positive definite matrix, we propose an iterative mean algorithm involving weighted arithmetic and geometric means of -positive definite matrices which is a weighted version of Carlson mean presented by Lee and Lim [13]. We show that each sequence of the weigthed Carlson iterative mean algorithm has a common limit and the common limit of satisfies weighted multidimensional versions of all properties like permutation symmetry, concavity, monotonicity, homogeneity, congruence invariancy, duality, mean inequalities.
 Keywords
Positive definite matrix;matrix geometric mean;iterative mean algorithm;weighted symmetrization procedure;
 Language
English
 Cited by
 References
1.
T. Ando, C.K. Li and R. Mathias, Geometric means, Linear Algebra Appl., 385(2004), 305-334. crossref(new window)

2.
R. Bhatia, On the exponential metric increasing property, Linear Algebra Appl. 375(2003), 211-220. crossref(new window)

3.
R. Bhatia, Positive definite matrices, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2007.

4.
D. Bini, B. Meini and F. Poloni, An effective matrix geometric mean satisfying the Ando-Li-Mathias properties, Math. Comp., 79(2010), 437-452. crossref(new window)

5.
C. W. Borchardt, Sur deux algorithmes analogues a celui de la moyenne aritheticog eometrique de deux elements, In memoriiam Dominici Chelini, Collectanea Mathematica [etc], L. Cremona, ed., U. Hoepli, Milan, 1881, 455-462.

6.
B. C. Carlson, Hidden symmetries of special functions, SIAM Review, 12(1970), 332- 346. crossref(new window)

7.
B. C. Carlson, Algorithms involving arithmetic and geometric means, Amer. Math. Monthly, 78(1971), 496-505. crossref(new window)

8.
G. Corach, H. Porta, and L. Recht, Convexity of the geodesic distance on spaces of positive operators, Illinois J. Math. 38(1994), 87-94.

9.
R. Horn and C. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985.

10.
S. Lang, Fundamentals of differential geometry, Graduate Texts in Math., Springer, Heidelberg, 1999.

11.
J. D. Lawson H. Lee and Y. Lim, Weighted geometric means, Forum Mathematicum, 24(2012), 1067-1090.

12.
J. D. Lawson and Y. Lim, The geometric mean, matrices, metrics, and more, Amer. Math. Monthly 108(2001), 797-812. crossref(new window)

13.
H. Lee and Y. Lim, Carlson's iterative algorithm of positive definite matrices, Linear Algebra Appl., accepted crossref(new window)

14.
H. Lee and Y. Lim, Invariant metrics, contractions and nonlinear matrix equations, Nonlinearity 21(2008), 857-878. crossref(new window)