Advanced SearchSearch Tips
Simple ECEM Algorithms Using Function Values Only
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 53, Issue 4,  2013, pp.573-591
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2013.53.4.573
 Title & Authors
Simple ECEM Algorithms Using Function Values Only
Kim, Philsu; Kim, Sang Dong; Lee, Eunjung;
  PDF(new window)
In this paper, we improve the error corrected Euler method(ECEM) introduced in [11] by evaluating function values only at local nodes in each time interval. As a result, one can avoid computations of Jacobian matrices on each time interval so that the algorithms become simpler to implement in solving various class of time dependent differential equations numerically. The proposed ECEM formula resembles to the Runge-Kutta method in its representations but both methods have different characteristic properties.
Runge-Kutta method;Butcher's table;Error Corrected Euler Method;
 Cited by
Error Control Strategy in Error Correction Methods, Kyungpook mathematical journal, 2015, 55, 2, 301  crossref(new windwow)
An iteration free backward semi-Lagrangian scheme for solving incompressible Navier–Stokes equations, Journal of Computational Physics, 2015, 283, 189  crossref(new windwow)
An error embedded method based on generalized Chebyshev polynomials, Journal of Computational Physics, 2016, 306, 55  crossref(new windwow)
J. C. Butcher, On Runge-Kutta processes of high order, Journal of the Australian Mathematical Society, 4(1964), 179-194. crossref(new window)

J. C. Butcher Numerical Methods for Ordinary Differential Equations, New York: John Wiley and Sons(2003).

G. Dahlquist, A special stability problem for linear multistep methods, BIT 3(1963), 27-43. crossref(new window)

P. J. Davis, P. Rabinowitz Methods of Numerical Integration, Academic Press, New York(1975).

E. Hairer, S.P Norsett, G. Wanner, Solving ordinary differential equations I, nonstiff problems, Springer, Berlin(1993).

E. Hairer, G.Wanner, Solving ordinary differential equations. II Stiff and Differential- Algebraic Problems, Springer Series in Computational Mathematics, Springer(1996).

A. C. Hindmarsh, ODEPACK, A systematized collection of ODE solvers, in: R. S. Stepleman et al., eds, Scientific Computing(North-Holland, Amsterdam, 1983), 55-64

F. Iavernaro, F. Mazzia, Solving ordinary differential equations by generalized Adams methods: properties and implementation techniques, Appl. Numer. Math., 28(1998), 107-126. crossref(new window)

F. Iavernaro, F. Mazzia, Block-boundary value methods for the solution of ordinary differential equations, SIAM J. Sci. Comput., 21(1999), 323-339. crossref(new window)

L. G. Ixaru, Exponentially fitted variable two-step BDF algorithm for first order ODEs, Comput. Phys. Comm., 150(2003), 116-128. crossref(new window)

P. Kim, X. Piao and S. Kim, An error corrected Euler method for solving stiff problems based on Chebyshev collocation, SIAM J. Numer. Anal., 49(2011), 2211-2230. crossref(new window)

S. D. Kim, X. Piao, D. H. Kim, P. Kim Convergence on error correction methods for solving initial value problems, J. Comput. Appl. Math., 236(2012), 4448-4461. crossref(new window)

J. Kwon, S. D. Kim, X. Piao, P. Kim, A Chebyshev collocation method for a stiff initial value problem and its stability, Kyungpook Math. J., 51(2011), 435-456. crossref(new window)

W. Liniger, R. A. Willoughby, Efficient integration methods for stiff systems of ordinary differential equations, SIAM J. Numer. Anal., 7(1970), 47-66. crossref(new window)

A. Prothero, A. Robinson, On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations, Math. Comput., 28(1974), 145-162. crossref(new window)

H. Ramos, R. Garcia-Rubio, Analysis ofa Chebyshev-based backward differentiation formulae and relation with Runge-Kutta collocation methods, Int. J. Comput. Math., 88(2011), 555-577. crossref(new window)

H. Ramos, J. Vigo-Aguiar, A fourth-order Runge-Kutta method based on BDF-type Chebyshev approximations, J. Comp. Appl. Numer., 204(2007), 124-136. crossref(new window)

H. Ramos, A non-standard explicit integration scheme for initial-value problems, Appl. Math. Comp., 189(2007), 710-718. crossref(new window)

H. H. Rosenbrock, Some general implicit processes for the numerical solution of differential equations, Computer J., 5(1962/63), 329-330.

L. F. Shampine, M.W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput., 18(1997), 1-22. crossref(new window)

M.M. Stabrowski, An efficient algorithm for solving stiff ordinary differential equations, Simul. Pract. Theory 5(1997), 333-344. crossref(new window)

J. G. Verwer, E. J. Spee, J. G. Blom, W.H. Hundsdorfer, A second-order Rosenbrock method applied to photochemical dispersion problems, SIAM J. Sci. Comput., 20(1999), 1456-1480. crossref(new window)

J. Vigo-Aguiar, H. Ramos, A family of A-stable Runge-Kutta collocation methods of higher order for initial-value problems, IMA J. Numer. Anal., 27(2007), 798-817. crossref(new window)

X. Y. Wu, J. L. Xia, Two low accuracy methods for stiff systems, Appl. Math. Comput., 123(2001), 141-153. crossref(new window)