JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Extreme Bilinear Forms of
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 53, Issue 4,  2013, pp.625-638
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2013.53.4.625
 Title & Authors
Extreme Bilinear Forms of
Kim, Sung Guen;
  PDF(new window)
 Abstract
First we present the explicit formula for the norm of a bilinear form on the 2-dimensional real predual of the Lorentz sequence space . Using this formula, we classify the extreme points of the unit ball of .
 Keywords
extreme bilinear forms;the 2-dimensional real predual of the Lorentz sequence space;
 Language
English
 Cited by
1.
Exposed Symmetric Bilinear Forms of 𝓛s(2d*(1, ω)2),;

Kyungpook mathematical journal, 2014. vol.54. 3, pp.341-347 crossref(new window)
2.
Exposed Bilinear Forms of 𝓛(2d*(1, w)2),;

Kyungpook mathematical journal, 2015. vol.55. 1, pp.119-126 crossref(new window)
1.
Exposed Bilinear Forms of 𝓛(2d*(1, w)2), Kyungpook mathematical journal, 2015, 55, 1, 119  crossref(new windwow)
2.
Exposed 2-Homogeneous Polynomials on the two-Dimensional Real Predual of Lorentz Sequence Space, Mediterranean Journal of Mathematics, 2016, 13, 5, 2827  crossref(new windwow)
3.
Exposed Symmetric Bilinear Forms of 𝓛s(2d*(1, ω)2), Kyungpook mathematical journal, 2014, 54, 3, 341  crossref(new windwow)
 References
1.
R. M. Aron, Y. S. Choi, S. G. Kim and M. Maestre, Local properties of polynomials on a Banach space, Illinois J. Math. 45(2001), 25-39.

2.
Y. S. Choi, H. Ki and S. G. Kim, Extreme polynomials and multilinear forms on $l_1$, J. Math. Anal. Appl. 228(1998), 467-482. crossref(new window)

3.
Y. S. Choi and S. G. Kim, The unit ball of $P(^2l^2_2)$, Arch. Math. (Basel) 71(1998), 472-480. crossref(new window)

4.
Y. S. Choi and S. G. Kim, Extreme polynomials on $c_0$, Indian J. Pure Appl. Math. 29(1998), 983-989.

5.
Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space $P(^2l_1)$, Results Math. 36(1999), 26-33. crossref(new window)

6.
Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces $P(^2l^2_p)$ (p =1, 2, ${\infty}$), Indian J. Pure Appl. Math. 35(2004), 37-41.

7.
S. Dineen, Complex Analysis on In nite Dimensional Spaces, Springer-Verlag, London (1999).

8.
S. Dineen, Extreme integral polynomials on a complex Banach space Math. Scand. 92(2003), 129-140.

9.
B. C. Grecu, Geometry of 2-homogeneous polynomials on $l_p$ spaces, 1 < p < ${\infty}$, J. Math. Anal. Appl. 273(2002), 262-282. crossref(new window)

10.
B. C. Grecu, G. A. Munoz-Fernandez and J.B. Seoane-Sepulveda, Unconditional con-stants and polynomial inequalities, J. Approx. Theory 161(2009), 706-722. crossref(new window)

11.
S. G. Kim, Exposed 2-homogeneous polynomials on $P(^2l^2_p)(1{\leq}p{\leq}{\infty})$, Math. Proc. Royal Irish Acad. 107A(2007), 123-129.

12.
S. G. Kim, The unit ball of $L_s(^2l^2_{\infty})$, Extracta Math. 24(2009), 17-29.

13.
S. G. Kim, The unit ball of $P(^2d_*(1,w)^2)$, Math. Proc. Royal Irish Acad. 111A(2011), 79-94.

14.
S. G. Kim, The unit ball of $L_s(^2d_*(1,w)^2)$, Kyungpook Math. J. 53(2013), 295-306. crossref(new window)

15.
S. G. Kim, Smooth polynomials of $P(^2d_*(1,w)^2)$, Math. Proc. Royal Irish Acad. 113A(2013), 45-58.

16.
S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc. 131(2003), 449-453. crossref(new window)

17.
J. Lee and K. S. Rim, Properties of symmetric matrices, J. Math. Anal. Appl. 305(2005), 219-226. crossref(new window)

18.
G. A. Munoz-Fernandez, S. Revesz and J. B. Seoane-Sepulveda, Geometry of ho-mogeneous polynomials on non symmetric convex bodies, Math. Scand. 105(2009), 147-160.

19.
G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl. 340(2008), 1069-1087. crossref(new window)

20.
R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl. 221(1998), 698-711. crossref(new window)